若奇函數(shù)f(x)(x∈R),滿足f(2)=1,f(x+2)=f(x)+f(2),則f(1)等于( 。
分析:根據(jù)條件式子,讓x取-1,利用函數(shù)是奇函數(shù),可得到f(1)的數(shù)值.
解答:解:因為f(2)=1,所以f(x+2)=f(x)+f(2)=f(x)+1,
令x=-1,所以f(-1+2)=f(-1)+1,即f(1)=f(-1)+1,
因為函數(shù)f(x)是奇函數(shù),所以f(1)=f(-1)+1=-f(1)+1,
即2f(1)=1,所以f(1)=
1
2

故選D.
點評:本題主要考查函數(shù)奇偶性的應用,讓x=-1構造f(1)與f(-1)的關系式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若奇函數(shù)f(x)(x∈R)滿足f(3)=1,f(x+3)=f(x)+f(3),則f(=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四種說法中,其中正確的是
 
(將你認為正確的序號都填上)
①奇函數(shù)的圖象必經(jīng)過原點;
②若冪函數(shù)y=xn(n<0)是奇函數(shù),則y=xn在定義域內(nèi)為減函數(shù);
③函數(shù)f(x)=|x2-2ax+b|(x∈R),若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);
④用min{a,b,c}表示a,b,c三個實數(shù)中的最小值,設f(x)=min{2x,x+2,10-x},則函數(shù)f(x)的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若奇函數(shù)f(x)定義域為R,且x≥0時,f(x)=x(x+1),則x∈R時f(x)的解析式為
f(x)=
x(x+1),x≥0
-x(x-1),x<0
f(x)=
x(x+1),x≥0
-x(x-1),x<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若奇函數(shù)f(x)(x∈R)滿足f(2)=1,f(x+2)=f(x)+f(2),則f(5)等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•安徽模擬)若奇函數(shù)f(x)(x∈R)滿足f(1)=1,f(x+2)=f(x)+f(2),則f(10)=
10
10

查看答案和解析>>

同步練習冊答案