在平面直角坐標(biāo)系x0y中,已知△ABC的頂點(diǎn)A(-6,0)和C(6,0),頂點(diǎn)B在雙曲線
x2
25
-
y2
11
=1
的右支上,則
sinA-sinC
sinB
 等于( 。
分析:由題意可知雙曲線的焦點(diǎn)坐標(biāo)就是A,B,利用正弦定理以及雙曲線的定義化簡(jiǎn)
sinA-sinC
sinB
,即可得到答案.
解答:解:由題意可知雙曲線的焦點(diǎn)坐標(biāo)就是A,B,
∵頂點(diǎn)B在雙曲線
x2
25
-
y2
11
=1
的右支上,
∴由雙曲線的定義可知BC-AB=-2a=-10,c=6,
sinA-sinC
sinB
=
BC-AB
AC
=-
2a
2c
=-
5
6

故選B.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查雙曲線的定義,正弦定理的應(yīng)用,考查計(jì)算能力,?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)直線y=
3
x+2m
和圓x2+y2=n2相切,其中m,n∈N,0<|m-n|≤1,若函數(shù)f(x)=mx+1-n的零點(diǎn)x0∈(k,k+1)k∈Z,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)在平面直角坐標(biāo)系xOy中,橢圓x2+
y2
4
=1在第一象限的部分為曲線C,曲線C在其上動(dòng)點(diǎn)P(x0,y0)處的切線l與x軸和y軸的交點(diǎn)分別為A、B,且向量
OM
=
OA
+
OB

(1)求切線l的方程(用x0表示);
(2)求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中.橢圓C:
x2
2
+y2=1
的右焦點(diǎn)為F,右準(zhǔn)線為l.
(1)求到點(diǎn)F和直線l的距離相等的點(diǎn)G的軌跡方程.
(2)過點(diǎn)F作直線交橢圓C于點(diǎn)A,B,又直線OA交l于點(diǎn)T,若
OT
=2
OA
,求線段AB的長;
(3)已知點(diǎn)M的坐標(biāo)為(x0,y0),x0≠0,直線OM交直線
x0x
2
+y0y=1
于點(diǎn)N,且和橢圓C的一個(gè)交點(diǎn)為點(diǎn)P,是否存在實(shí)數(shù)λ,使得
OP
2
OM
ON
,若存在,求出實(shí)數(shù)λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy(O為坐標(biāo)原點(diǎn))中,橢圓E1
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn)在圓E2:x2+y2=a+b上,且橢圓的離心率是
3
2

(Ⅰ)求橢圓E1和圓E2的方程;
(Ⅱ)是否存在經(jīng)過圓E2上的一點(diǎn)P(x0,y0)的直線l,使l與圓E2相切,與橢圓E1有兩個(gè)不同的交點(diǎn)A、B,且
OA
OB
=3?若存在,求出點(diǎn)P的橫坐標(biāo)x0的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)A(
a
2
,
a
2
),B(
3
,1)

(1)求橢圓C的方程;
(2)已知點(diǎn)P(x0,y0)在橢圓C上,F(xiàn)為橢圓的左焦點(diǎn),直線l的方程為x0x+3y0y-6=0.
①求證:直線l與橢圓C有唯一的公共點(diǎn);
②若點(diǎn)F關(guān)于直線l的對(duì)稱點(diǎn)為Q,求證:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),直線PQ恒過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案