在數(shù)列中,, ,則【    】.

A.      B.         C.      D.

A


解析:

據(jù)題意,

,將以上各式相加,得,故選A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2011-2012學年上海市崇明縣高三高考模擬考試二模理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列是各項均不為0的等差數(shù)列,公差為d,為其前n項和,且滿足,.數(shù)列滿足,,為數(shù)列的前n項和.

(1)求數(shù)列的通項公式和數(shù)列的前n項和;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

第二問,①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時,滿足,

,

(2)①當n為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時取得.

此時 需滿足.  

②當n為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時取得最小值-6.

此時 需滿足

綜合①、②可得的取值范圍是

(3)

     若成等比數(shù)列,則,

即.

,可得,即

,且m>1,所以m=2,此時n=12.

因此,當且僅當m=2, n=12時,數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年黑龍江省高一下學期第一次月考考試數(shù)學試卷 題型:解答題

在等差數(shù)列中,已知,求數(shù)列的公差及前項和

【題文】已知函數(shù),則的值為

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期模擬沖刺考試文科數(shù)學試卷(解析版) 題型:解答題

某市投資甲、乙兩個工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.

(Ⅰ)求數(shù)列,的通項公式;

(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個工廠被另一個工廠兼并.

【解析】本試題主要考查數(shù)列的通項公式的運用。

第一問由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二問,考查等差數(shù)列與等比數(shù)列的綜合,考查用數(shù)列解決實際問題,其步驟是建立數(shù)列模型,進行計算得出結(jié)果,再反饋到實際中去解決問題.由于比較兩個工廠的產(chǎn)量時兩個函數(shù)的形式較特殊,不易求解,故采取了列舉法,數(shù)據(jù)列舉時作表格比較簡捷.

解:(Ⅰ)由題得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的產(chǎn)量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工廠將被乙工廠兼并

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高三年級第二次質(zhì)量調(diào)研二模理科試卷(解析版) 題型:解答題

已知數(shù)列是首項為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項公式;

(2)   若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項是2,公比為2的等比數(shù)列,即.

此時也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質(zhì)得:

(i)當時,;

(ii) 當時,,

所以

第三問假設(shè)存在正整數(shù)n滿足條件,則

則(i)當時,

,

 

查看答案和解析>>

同步練習冊答案