已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長(zhǎng)度單位,圓C的參數(shù)方程為(為參數(shù)),點(diǎn)Q的極坐標(biāo)為。
(1)化圓C的參數(shù)方程為極坐標(biāo)方程;
(2)直線過(guò)點(diǎn)Q且與圓C交于M,N兩點(diǎn),求當(dāng)弦MN的長(zhǎng)度為最小時(shí),直線 的直角坐標(biāo)方程。
(1)(2)
解析試題分析:(1) 先化參數(shù)方程為普通方程,然后利用平面直角坐標(biāo)與極坐標(biāo)互化公式:即可;(2)先把Q點(diǎn)坐標(biāo)化為平面直角坐標(biāo),根據(jù)圓的相關(guān)知識(shí)明確:當(dāng)直線⊥CQ時(shí),MN的長(zhǎng)度最小,然后利用斜率公式求出MN斜率.
試題解析:(1)圓C的直角坐標(biāo)方程為,2分
又 4分
∴圓C的極坐標(biāo)方程為 5分
(2)因?yàn)辄c(diǎn)Q的極坐標(biāo)為,所以點(diǎn)Q的直角坐標(biāo)為(2,-2)7分
則點(diǎn)Q在圓C內(nèi),所以當(dāng)直線⊥CQ時(shí),MN的長(zhǎng)度最小
又圓心C(1,-1),∴,
直線的斜率 9分
∴直線的方程為,即 10分
考點(diǎn):(1)參數(shù)方程與普通方程;(2)平面直角坐標(biāo)與極坐標(biāo);(3)圓的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:(>0),已知過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于M,N兩點(diǎn).
(1)寫(xiě)出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過(guò)圓O1、圓O2交點(diǎn)的直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫(xiě)出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,直線的方程為,曲線的參數(shù)方程為.
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,點(diǎn)的極坐標(biāo)為,判斷點(diǎn)與直線的位置關(guān)系;
(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的極坐標(biāo)方程為ρ2=,點(diǎn)F1,F2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),t∈R).
(1)求直線l和曲線C的普通方程.
(2)求點(diǎn)F1,F2到直線l的距離之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求與交點(diǎn)的極坐標(biāo)().
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,已知圓ρ=2cos θ與直線3ρcos θ+4ρsin θ+a=0相切,求實(shí)數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com