橢圓:的右焦點與拋物線的焦點重合,過作與軸垂直的直線與橢圓交于兩點,與拋物線交于兩點,且。
(1)求橢圓的方程;
(2)若過點的直線與橢圓相交于兩點,設(shè)為橢圓上一點,且滿足
為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍。
(1) (2)
解析試題分析:(1)設(shè)橢圓的半長軸、半短軸、半焦距為,則,且,
,又,
,
——————————————————————————————6分
(2)由題,直線斜率存在,設(shè)直線: ,聯(lián)立,消得:
,由,得 ①————————8分
設(shè),由韋達定理得,
,
則
或(舍)②
由①②得:——————————————————————————11分
則的中點
,得代入橢圓方程得:
,即
,,即————————15分
考點:橢圓方程,直線與橢圓位置關(guān)系
點評:根據(jù)圓錐曲線的性質(zhì)求解橢圓的方程,同時能聯(lián)立方程組來得到交點坐標(biāo)的關(guān)系,結(jié)合韋達定理來分析求解,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(不是左、右頂點),且以為直徑的圓經(jīng)過橢圓C的右頂點A. 求證:直線過定點,并求出定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓:()的離心率為,過右焦點且斜率為1的直線交橢圓于兩點,為弦的中點。
(1)求直線(為坐標(biāo)原點)的斜率;
(2)設(shè)橢圓上任意一點,且,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線稱為橢圓的“特征直線”,若橢圓的離心率.(1)求橢圓的“特征直線”方程;
(2)過橢圓C上一點作圓的切線,切點為P、Q,直線PQ與橢圓的“特征直線”相交于點E、F,O為坐標(biāo)原點,若取值范圍恰為,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓()過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標(biāo)原點),求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標(biāo)系中,已知三點,,,曲線C上任意—點滿足:.
(l)求曲線C的方程;
(2)設(shè)點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當(dāng)點P的坐標(biāo)為(0,2)時,取得最小值,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)直線與橢圓相交于兩個不同的點,與軸相交于點,記為坐標(biāo)原點.
(1)證明:
(2)若且的面積及橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知點,,△的周長為6.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)過點的直線與曲線相交于不同的兩點,.若點在軸上,且,求點的縱坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com