1 |
4 |
1 |
4 |
11 |
4 |
15 |
8 |
17 |
15 |
15 |
8 |
17 |
15 |
x02-3 |
2x0 |
x02+3 |
k1 |
x02+3 |
k2 |
1 |
k1 |
1 |
k2 |
|-x0k1+x02+3| | ||
|
2(3+x0)2x0 |
x02-1 |
(3+x02)2-1 |
x02-1 |
1 |
k1 |
1 |
k2 |
x02-3 |
x0 |
1 |
k1 |
1 |
k2 |
1 |
x0 |
2(3+x02)x0 |
(x02+3)2-1 |
1 |
x0 |
4 | 8 |
4 | 8 |
2 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|ST| |
|SP| |
|ST| |
|SQ| |
1 |
y1 |
1 |
y2 |
|ST| |
|SP| |
|ST| |
|SQ| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
如圖,斜率為1的直線過拋物線的焦點(diǎn)F,與拋物線交于兩點(diǎn)A,B。
(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點(diǎn),直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點(diǎn),證明M,N兩點(diǎn)的縱坐標(biāo)之積為定值(僅與p有關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省棗莊市2010屆高三年級(jí)調(diào)研考試數(shù)學(xué)(文科)試題 題型:解答題
(本題滿分12分)
如圖,斜率為1的直線過拋物線的焦點(diǎn)F,與拋物線交于兩點(diǎn)A,B。
(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點(diǎn),直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點(diǎn),證明M,N兩點(diǎn)的縱坐標(biāo)之積為定值(僅與p有關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省棗莊市2010屆高三年級(jí)調(diào)研考試數(shù)學(xué)(文科)試題 題型:解答題
(本題滿分12分)
如圖,斜率為1的直線過拋物線的焦點(diǎn)F,與拋物線交于兩點(diǎn)A,B。
(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點(diǎn),直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點(diǎn),證明M,N兩點(diǎn)的縱坐標(biāo)之積為定值(僅與p有關(guān))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com