已知向量
p
=(2cosωx+2sinωx,f(x))
,
q
=(1,cosωx)
,ω>0且
p
q
,函數(shù)f(x)圖象上相鄰兩條對稱軸之間的距離是2π.
(1)求ω值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)設(shè)函數(shù)g(x)=f(x+φ),φ∈(0,π),若g(x)為偶函數(shù),求g(x)的最大值及相應(yīng)的x值.
(1)∵
p
q
,∴(2cosωx+2sinωx)cosωx-f(x)=0
得f(x)=(2cosωx+2sinωx)cosωx
=2cos2ωx+2sinωxcosωx
=1+cos2ωx+sin2ωx
=
2
sin(2ωx+
π
4
)+1
…(3分)
由題設(shè)可知,函數(shù)f(x)的周期T=4π,則ω=
1
4
…(4分)
(2)由(1)得f(x)=
2
sin(
x
2
+
π
4
)+1
2kπ+
π
2
x
2
+
π
4
≤2kπ+
2
,
解得4kπ+
π
2
≤x≤4kπ+
2
,其中k∈Z
∴函數(shù)f(x)的單調(diào)減區(qū)間是[4kπ+
π
2
,4kπ+
2
]
(k∈Z).…(7分)
(3)g(x)=f(x+φ)=
2
sin(
x+φ
2
+
π
4
)+1
,∵g(x)為偶函數(shù),
∴圖象關(guān)于y軸為對稱軸
將x=0代入,得sin(
φ
2
+
π
4
)=±1
,則有
φ
2
+
π
4
=kπ+
π
2
?φ=2kπ+
π
2

又∵φ∈(0,π),∴φ=
π
2
,則g(x)=
2
sin(
x
2
+
π
2
)+1=
2
cos
x
2
+1
…(10分)
當(dāng)cos
x
2
=1
,時(shí),函數(shù)g(x)取得最大值
2
+1

此時(shí)
x
2
=2kπ?x=4kπ
,其中k∈Z.…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(2cosωx+2sinωx,f(x))
,
q
=(1,cosωx)
,ω>0且
p
q
,函數(shù)f(x)圖象上相鄰兩條對稱軸之間的距離是2π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=f(x+φ),φ∈(0,π),若g(x)為偶函數(shù),求g(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(2cosωx+2sinωx,f(x))
,
q
=(1,cosωx)
,ω>0且
p
q
,函數(shù)f(x)圖象上相鄰兩條對稱軸之間的距離是2π.
(1)求ω值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)設(shè)函數(shù)g(x)=f(x+φ),φ∈(0,π),若g(x)為偶函數(shù),求g(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
p
=(2cosωx+2sinωx,f(x))
,
q
=(1,cosωx)
,ω>0且
p
q
,函數(shù)f(x)圖象上相鄰兩條對稱軸之間的距離是2π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=f(x+φ),φ∈(0,π),若g(x)為偶函數(shù),求g(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量=(sin,2cos),=()

(Ⅰ)當(dāng)qÎ[0,p]時(shí),求函數(shù)f()=×的值域;

(Ⅱ)若,求sin2的值.

查看答案和解析>>

同步練習(xí)冊答案