精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xOy中,點P(
1
2
,cos2θ)在角α的終邊上,點Q(sin2θ,-1)在角β的終邊上,且
OP
OQ
=-
1
2

(1)求cos2θ;
(2)求sin(α+β)的值.
分析:(1)由點P、Q的坐標即
OP
、
OQ
坐標,結合向量數量積坐標運算公式得θ的三角函數等式,再利用余弦的倍角公式把此等式降冪即可;
(2)首先由余弦的倍角公式求出cos2θ,再根據同角正余弦的關系式求出sin2θ,即明確點P、Q的坐標,然后由三角函數定義得sinα、cosα、sinβ、cosβ的值,最后利用正弦的和角公式求得答案.
解答:解:(1)∵
OP
OQ
=-
1
2

1
2
sin2θ-cos2θ=-
1
2
,
1-cos2θ
4
-
1+cos2θ
2
=-
1
2

cos2θ=
1
3

(2)由(1)得:cos2θ=
1+cos2θ
2
=
2
3
,
P(
1
2
,
2
3
)
sin2θ=
1-cos2θ
2
=
1
3
,
Q(
1
3
,-1)

sinα=
4
5
,cosα=
3
5
,sinβ=-
3
10
10
cosβ=
10
10
,
sin(α+β)=sinαcosβ+cosαsinβ=-
10
10
點評:本題綜合考查倍角公式、和角公式、同角三角函數關系、及三角函數定義,同時考查向量坐標的定義及向量數量積坐標運算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數方程(以t為參數)及普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案