如圖,已知六棱錐PABCDEF的底面是正六邊形,平面ABC,給出下列結(jié)論:①;②平面平面PBC;③直線平面PAE;④;⑤直線PD與平面PAB所成角的余弦值為。
其中正確的有                (把所有正確的序號(hào)都填上)。
①④⑤

試題分析:解:對于①、由PA⊥平面ABC,AE?平面ABC,得PA⊥AE,又由正六邊形的性質(zhì)得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB?平面PAB,∴AE⊥PB,①正確;
對于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②錯(cuò);
對于③、由正六邊形的性質(zhì)得BC∥AD,又AD?平面PAD,∴BC∥平面PAD,∴直線BC∥平面PAE也不成立,③錯(cuò);
對于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正確.
⑤直線PD與平面PAB所成角的余弦值為,成立。
故答案為:①④⑤
點(diǎn)評(píng):本小題考查空間中的線面關(guān)系,正六邊形的性質(zhì)等基礎(chǔ)知識(shí),考查空間想象能力和思維能力,以及空間想象能力、推理論證能力和運(yùn)算求解能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△中,,,點(diǎn)上,,.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面

(Ⅰ)求證:平面
(Ⅱ)設(shè),當(dāng)為何值時(shí),二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊ABCD中,,,若將其沿BD折成直二面角 A-BD-C,則三棱錐A—BCD的外接球的體積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是三個(gè)不重合的平面,l是直線,給出下列命題:
①若,則;  ②若
③若l上存在兩點(diǎn)到的距離相等,則; ④若
其中正確的命題是(    )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示在四棱錐P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是邊長為2的正方形,△PAB為等邊三角形。(12分)

(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖4,在三棱柱中,△是邊長為的等邊三角形,
平面,,分別是,的中點(diǎn).

(1)求證:∥平面;
(2)若上的動(dòng)點(diǎn),當(dāng)與平面所成最大角的正切值為時(shí),
求平面 與平面所成二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點(diǎn),平面與平面交于,求證:

(1)平面;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點(diǎn),中點(diǎn),上一個(gè)動(dòng)點(diǎn).

(Ⅰ)確定點(diǎn)的位置,使得
(Ⅱ)當(dāng)時(shí),求二面角的平
面角余弦值.

查看答案和解析>>

同步練習(xí)冊答案