【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計劃收獲后能全部售出,價格為10元,如果收入(收入=產(chǎn)量×價格)不低于25000元,則的最大值是多少?
(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(直線的交點)處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測它的產(chǎn)量的分布列與數(shù)學(xué)期望.
附:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
【答案】(1)
(2)每株“相近”的株數(shù)的最大值為5.
(3)的分布列為:
11 | ||||
一株產(chǎn)量的期望為
【解析】
(1)根據(jù)回歸系數(shù)公式計算回歸系數(shù),得出回歸方程;
(2)先根據(jù)題意求得產(chǎn)量的范圍,再根據(jù)回歸方程解得m的范圍即可;
(3)根據(jù)相鄰株數(shù)的取值計算對應(yīng)的產(chǎn)量,從而得出分布列和數(shù)學(xué)期望.
(1)由題意得:,
,
∴
,
,
所以,
,
所以.
(2)設(shè)每株的產(chǎn)量為,
根據(jù)題意:,
解得,
令,
解得,
所以每株“相近”的株數(shù)的最大值為5.
(3)由回歸方程得:
當(dāng)時,,
當(dāng)時,,
當(dāng)時,,
當(dāng)時,,
由題意得:
,
,
,
,
所以的分布列為:
11 | ||||
所以,
所以一株產(chǎn)量的期望為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C上橫坐標(biāo)為3的點M到焦點F的距離為4.
(1)求拋物線C的方程;
(2)過拋物線C的焦點F且斜率為1的直線l交拋物線C于A、B兩點,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù),如果存在區(qū)間,其中,同時滿足:
①在內(nèi)是單調(diào)函數(shù):②當(dāng)定義域為時,的值域為,則稱函數(shù)是區(qū)間上的“保值函數(shù)”,區(qū)間稱為“保值函數(shù)”.
(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;
(2)若函數(shù)()是區(qū)間上的“保值函數(shù)”,求的取值范圍;
(3)對(2)中函數(shù),若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)該種植基地在如圖所示的長方形地塊的每個格點(橫縱直線的交點)處都種了一株該種水果,其中每個小正方形的面積都為,現(xiàn)從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測它的產(chǎn)量的平均數(shù).
附:回歸方程中斜率和截距的最小二乘法估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動圓與圓外切,與圓內(nèi)切.
(1)求動圓圓心的軌跡方程;
(2)直線過點且與動圓圓心的軌跡交于、兩點.是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“若,則x,y互為倒數(shù)”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若,則有實根”的逆否命題;
④“若,則”的逆命題。
其中真命題是( )
A.①②④B.②③④C.①②③D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com