已知圓的極坐標(biāo)方程為: .
⑴將極坐標(biāo)方程化為普通方程;
⑵若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
⑴; ⑵x+y最大值為6,最小值為2.
解析試題分析:⑴; ⑵圓的參數(shù)方程為
所以,那么x+y最大值為6,最小值為2.
考點(diǎn):本題主要考查極坐標(biāo)、參數(shù)方程。
點(diǎn)評(píng):中檔題,極坐標(biāo)、參數(shù)方程作為選考內(nèi)容,命題難度也不太大。極坐標(biāo)主要停留在簡(jiǎn)單曲線方程的互化,而參數(shù)方程的應(yīng)用,則顯得更為突出。本題應(yīng)用參數(shù)方程,將求二元函數(shù)的最值問(wèn)題,轉(zhuǎn)化成了三角函數(shù)問(wèn)題,也很好體現(xiàn)了“換元思想”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.試求曲線和的直角坐標(biāo)方程,并判斷兩曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系內(nèi),直線的參數(shù)方程為為參數(shù).以為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.判斷直線和圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共10分)
在直角坐標(biāo)系中直線L過(guò)原點(diǎn)O,傾斜角為,在極坐標(biāo)系中(與直角坐標(biāo)系有相同的長(zhǎng)度單位,極點(diǎn)為原點(diǎn),極軸與x的非負(fù)半軸重合)曲線C:,
(1)求曲線C的直角坐標(biāo)方程;
(2)直線L與曲線C交于點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn),
(1)求曲線,的方程;
(2)若點(diǎn),在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為
(其中為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓上的點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
選修4—4:坐標(biāo)系與參數(shù)方程
已知直線l經(jīng)過(guò)點(diǎn)P(1,1),傾斜角,
(1)寫(xiě)出直線l的參數(shù)方程。
(2)設(shè)l與圓相交與兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知某圓的極坐標(biāo)方程為
(I)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫(xiě)出它的參數(shù)方程;
(II)若點(diǎn)在該圓上,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖所示,在△ABC中,AH⊥BC于H,E是AB的中點(diǎn),EF⊥BC于F,若HC=BH,則FC∶BF等于
A. | B. |
C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com