已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
請(qǐng)解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).
分析:(1)直接取x1=x2=0利用f(x1+x2)≥f(x1)+f(x2)可得:f(0)≤0,再結(jié)合已知條件f(0)≥0即可求得f(0)=0;
(2)因?yàn)間(x)=2x-1在[0,1]上滿足①g(x)≥0;②g(1)=1,所以只須證其滿足條件③即可,因?yàn)橛?span id="8zidfym" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2 x2-1)]=(2x1-1)(2 x2-1)≥0.故成立.
(3)由0≤x1<x2≤1,則0<x2-x1<1,故有f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1),即得結(jié)論成立.
解答:解:(1)取x1=x2=0
得f(0)≥f(0)+f(0),
又由f(0)≥0,得f(0)=0
(2)解:顯然g(x)=2x-1在[0,1]上滿足①g(x)≥0;②g(1)=1
若x1≥0,x2≥0,且x1+x2≤1,
則有g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2 x2-1)]=(2x1-1)(2 x2-1)≥0.
故g(x)=2x-1滿足條件①﹑②﹑③
所以g(x)=2x-1為友誼函數(shù).
(3)解:因?yàn)?≤x1<x2≤1,則0<x2-x1<1,
所以f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1)
故有f(x1)≤f(x2).
點(diǎn)評(píng):本題主要是在新定義下對(duì)抽象函數(shù)進(jìn)行考查,在做關(guān)于新定義的題目時(shí),一定要先研究定義,在理解定義的基礎(chǔ)上再做題.