已知數(shù)列{an}的前n項和Sn=12n-n2
(Ⅰ)求數(shù)列{an}的通項公式,并證明{an}是等差數(shù)列;
(Ⅱ)若cn=12-an,求數(shù)列{
1cncn+1
}
的前n項和Tn
分析:(Ⅰ)依題意,可求得an=13-2n,利用等差數(shù)列的定義,易證當n∈N*時,an+1-an=-2為定值,從而證得結論;
(Ⅱ)由(Ⅰ)知cn=2n-1,利用裂項法得
1
cncn+1
=
1
2
1
2n-1
-
1
2n+1
),從而可求數(shù)列{
1
cncn+1
}的前n項和.
解答:解( I)當n≥2時,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n,
當n=1時,a1=S1=12-1=11適合上式,
∴an=13-2n,
∴當n∈N*時,an+1-an=13-2(n+1)-(13-2n)=-2為定值,
∴數(shù)列{an}是等差數(shù)列;
( II)∵cn=12-an=12-(13-2n)=2n-1,n∈N*,
1
cncn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
1
2
(1-
1
2n+1
)=
n
2n+1
點評:本題考查數(shù)列的求和,著重考查等差關系的確定與裂項法求和,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案