15分)經(jīng)市場調(diào)查,某超市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價格(元)均為時間(天)的函數(shù),且銷售量近似滿足函數(shù)(件),價格近似滿足函數(shù)
(元)。
(1)試寫出該種商品的日銷售額函數(shù)表達(dá)式;
(2)求該種商品的日銷售額的最大值與最小值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某單位決定投資3 200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米造價45元,屋頂每平方米造價20元,試計算:
(1)倉庫面積S的最大允許值是多少?
(2)為使S達(dá)到最大,而實際投資又不超過預(yù)算,那么正面鐵柵應(yīng)設(shè)計為多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 已知二次函數(shù)與軸有兩個交點和,若,且.
(Ⅰ)求此二次函數(shù)的解析式
(Ⅱ)若在閉區(qū)間的最大值為,求的解析式及其最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知二次函數(shù).
(1)若,,解關(guān)于x不等式;
(2)若f(x)的最小值為0,且A.<b,設(shè),請把表示成關(guān)于t的函數(shù)g(t),并求g(t)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地
平面,單位長度為1千米,某炮位于坐標(biāo)原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān),炮的射程是指炮彈落地點的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標(biāo)不超過多少時,炮彈可以擊中它?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)某城市自西向東和自南向北的兩條主干道的東南方位有一塊空地市規(guī)劃部門計劃利用它建設(shè)一個供市民休閑健身的小型綠化廣場,如下圖所示是步行小道設(shè)計方案示意圖,
其中,分別表示自西向東,自南向北的兩條主干道.設(shè)計方案是自主干道交匯點處修一條步行小道,小道為拋物線的一段,在小道上依次以點
為圓心,修一系列圓型小道,這些圓型小道與主干道相切,且任意相鄰的兩圓彼此外切,若(單位:百米)且.
(1)記以為圓心的圓與主干道切于點,證明:數(shù)列是等差數(shù)列,并求關(guān)于的表達(dá)式;
(2)記的面積為,根據(jù)以往施工經(jīng)驗可知,面積為的圓型小道的施工工時為(單位:周).試問5周時間內(nèi)能否完成前個圓型小道的修建?請說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)是增函數(shù),函數(shù)
在R上有極值,求使命題“p且q”為真的實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在邊長為60cm的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com