設(shè)數(shù)列的前項(xiàng)和為.已知,,

(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)記為數(shù)列的前項(xiàng)和,求

 

【答案】

(Ⅰ)(Ⅱ)

【解析】

試題分析:(Ⅰ)由題意,,則當(dāng)時(shí),.

兩式相減,得).                     

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060708355198929797/SYS201306070836360361738864_DA.files/image007.png">,,,                

所以數(shù)列是以首項(xiàng)為,公比為的等比數(shù)列,      

所以數(shù)列的通項(xiàng)公式是).             

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060708355198929797/SYS201306070836360361738864_DA.files/image014.png">,

所以,       

兩式相減得,,    

整理得, ().    

考點(diǎn):數(shù)列遞推式

點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)與求和,考查錯(cuò)位相減法,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列的前項(xiàng)和為,已知,且

,

其中為常數(shù).

(Ⅰ)求的值;

(Ⅱ)證明:數(shù)列為等差數(shù)列;

(Ⅲ)證明:不等式對(duì)任何正整數(shù)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列的前項(xiàng)和為,已知對(duì)任意正整數(shù),都有成立。

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè),數(shù)列的前項(xiàng)和為,求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆浙江省杭州市七校高三上學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題滿(mǎn)分14分)設(shè)數(shù)列的前項(xiàng)和為,已知.
(1)求數(shù)列的通項(xiàng)公式
(2)問(wèn)數(shù)列中是否存在某三項(xiàng),它們可以構(gòu)成一個(gè)等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(全國(guó)卷Ⅱ) 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)數(shù)列的前項(xiàng)和為。已知,,
(Ⅰ)設(shè),求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省高二第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

 設(shè)數(shù)列的前項(xiàng)和為,已知

(Ⅰ)求證:數(shù)列為等差數(shù)列,并寫(xiě)出關(guān)于的表達(dá)式;

(Ⅱ)若數(shù)列項(xiàng)和為,問(wèn)滿(mǎn)足的最小正整數(shù)是多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案