【題目】已知圓Cx2+y2+2x2y+10和拋物線Ey22pxp0),圓C與拋物線E的準線交于M、N兩點,MNF的面積為p,其中FE的焦點.

1)求拋物線E的方程;

2)不過原點O的動直線l交該拋物線于A,B兩點,且滿足OAOB,設(shè)點Q為圓C上任意一動點,求當(dāng)動點Q到直線l的距離最大時直線l的方程.

【答案】1y24x 2y5x20

【解析】

1)求得圓的圓心和半徑,拋物線的焦點和準線方程,由三角形的面積公式和圓的弦長公式,計算可得,可得拋物線的方程;

2)不過原點的動直線的方程設(shè)為,,聯(lián)立拋物線方程,運用韋達定理和兩直線垂直的條件,解方程可得,即有動直線恒過定點,結(jié)合圖象可得直線時,到直線的距離最大,求得直線的斜率,可得所求方程.

解:(1)圓的圓心,半徑為1,

拋物線的準線方程為,,,

的面積為,可得,即,

可得經(jīng)過圓心,可得.則拋物線的方程為;

(2)不過原點的動直線的方程設(shè)為,

聯(lián)立拋物線方程,可得,

設(shè),,,,可得,,

可得,即,即,解得,

則動直線的方程為,恒過定點

當(dāng)直線時,到直線的距離最大,

,可得到直線的距離的最大值為,

此時直線的斜率為,

直線的斜率為5,可得直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.

1)求橢圓的標準方程.

2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):平面內(nèi)到兩個定點,的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標系中,,,點滿足.設(shè)點的軌跡為,下列結(jié)論正確的是(

A.的方程為

B.上存在點,使得

C.當(dāng),,三點不共線時,射線的平分線

D.在三棱錐中,,且,,,該三棱錐體積最大值為12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(I)討論的單調(diào)性;

(II)若恒成立,證明:當(dāng)時,.

(III)在(II)的條件下,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 y = x3 + x2 在點 P0 處的切線平行于直線

4xy1=0,且點 P0 在第三象限,

P0的坐標;

若直線, l 也過切點P0 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點恰好是橢圓的右焦點.

1)求實數(shù)的值及拋物線的準線方程;

2)過點任作兩條互相垂直的直線分別交拋物線、點,求兩條弦的弦長之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在底面為正方形的四棱錐P—ABCD中,AB=2,PA=4,PB=PD=,ACBD相交于點O,E,G分別為PD,CD中點,

(1)求證:EO//平面PBC;

(2)設(shè)線段BC上點F滿足BC=3BF,求三棱錐E—OFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運行如圖所示的程序框圖,則輸出的結(jié)果S為(  )

A. B. C. 0D.

查看答案和解析>>

同步練習(xí)冊答案