已知函數(shù)
(1)若,有,求的取值范圍;
(2)當(dāng)有實數(shù)解時,求的取值范圍。
(1);(2)。
解析試題分析:(1)設(shè),則原函數(shù)變形為 其對稱軸為。
①時,函數(shù)在上單調(diào)遞增,所以函數(shù)值域為。因此有
②時,有 ,所以.
③時,函數(shù)在上單調(diào)遞減,有
綜上所述:
(2)①時,函數(shù)在上單調(diào)遞增,因此有
②時,有 ,所以此時無解。
③時,函數(shù)在上單調(diào)遞減,有
綜上所述:。
考點:本題主要考查正弦函數(shù)的值域,二次函數(shù)圖象和性質(zhì),簡單不等式組的解法。
點評:中檔題,通過換元,將問題轉(zhuǎn)化成二次函數(shù)在閉區(qū)間的最值問題。研究二次函數(shù)在閉區(qū)間的最值問題,要注意“二次項系數(shù)的正負,對稱軸的位置,區(qū)間端點的函數(shù)值”,一般有兩種情況:一是“軸動區(qū)間定”,二是“軸動區(qū)間定”。(2)是討論方程解的情況,注意結(jié)合圖象進行分析,布列不等式組。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)列表并畫出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(2)將函數(shù)的圖象作怎樣的變換可得到的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量=(cosx,sinx), ,且x∈[0,].
(1)求
(2)設(shè)函數(shù)=+,求函數(shù)的最值及相應(yīng)的的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在R上的函數(shù)f(x)=的周期為,
且對一切xR,都有f(x);
(1)求函數(shù)f(x)的表達式;
(2)若g(x)=f(),求函數(shù)g(x)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為偶函數(shù),且其圖象上相鄰兩對稱軸之間的距離為.
(1)求函數(shù)的表達式;(2)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com