【題目】下列說法正確的是(
A.“x2+x﹣2>0”是“x>1”的充分不必要條件
B.“若am2<bm2 , 則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2﹣1<0”的否定是“?x∈R,均有2x2﹣1>0”
D.命題“若x= ,則tanx=1”的逆命題為真命題

【答案】B
【解析】解:選項A,x2+x﹣2>0,解得x<﹣2或x>1,故“x2+x﹣2>0”是“x>1”的必要不充分條件,故A錯誤;選項B,“若am2<bm2 , 則a<b”的逆否命題為“若a≥b,則am2≥bm2”為真命題,故B正確;
選項C,命題““x∈R,使得2x2﹣1<0”的否定是“x∈R,均有2x2﹣1≥0”,故C錯誤;
選項D,命題“若x= ,則tanx=1”的逆命題“若tanx=1,則x= ”,因為tanx=1,則x= +kπ,k∈Z”,故D錯誤,
故選B.
【考點精析】本題主要考查了命題的真假判斷與應用的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知M是直線l:x=﹣1上的動點,點F的坐標是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點N (Ⅰ)求點N的軌跡C的方程
(Ⅱ)設曲線C上的動點A關于x軸的對稱點為A′,點P的坐標為(2,0),直線AP與曲線C的另一個交點為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個定點Q,使得|QH|為定值?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,P(x,y)為函數(shù)y=1+lnx圖象上一點,記直線OP的斜率k=f(x). (Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+ )(m>0)上存在極值,求實數(shù)m的取值范圍;
(Ⅱ)當x≥1時,不等式f(x)≥ 恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足bn=an+1﹣an(n=1,2,3,…).
(1)若bn=10﹣n,求a16﹣a5的值;
(2)若 且a1=1,則數(shù)列{a2n+1}中第幾項最?請說明理由;
(3)若cn=an+2an+1(n=1,2,3,…),求證:“數(shù)列{an}為等差數(shù)列”的充分必要條件是“數(shù)列{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,CA=CB,側面ABB1A1是邊長為2的正方形,點E,F(xiàn)分別在線段AAl , A1B1上,且AE= ,A1F= ,CE⊥EF,M為AB中點 (Ⅰ)證明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(x+ )+sinx.
(I)利用“五點法”,列表并畫出f(x)在[﹣ , ]上的圖象;
(II)a,b,c分別是△ABC中角A,B,C的對邊.若a= ,f(A)= ,b=1,求△ABC的面積.

x

f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是
說法錯誤的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工藝品廠要設計一個如圖Ⅰ所示的工藝品,現(xiàn)有某種型號的長方形材料如圖Ⅱ所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖Ⅰ的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點P,設△ADP的面積為
S2 , 折疊后重合部分△ACP的面積為S1
(Ⅰ)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時,應怎樣設計材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時,應怎樣設計材料的長和寬?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由于研究性學習的需要,中學生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設步數(shù)為x)

組別

步數(shù)分組

頻數(shù)

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

2

E

9500≤x<10500

n

(Ⅰ)寫出m,n的值,并回答這20名“微信運動”團隊成員一天行走步數(shù)的中位數(shù)落在哪個組別;
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 的大小;(只需寫出結論)
(Ⅲ)從上述A,E兩個組別的數(shù)據(jù)中任取2個數(shù)據(jù),記這2個數(shù)據(jù)步數(shù)差的絕對值為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案