已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,且過雙曲線的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、是雙曲線上關(guān)于它的中心對稱的任意兩點(diǎn), 為該雙曲線上的動(dòng)點(diǎn),若直線、均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個(gè)關(guān)于橢圓的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程,不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
(1)
(2)關(guān)于橢圓的正確命題是:設(shè)、是橢圓上關(guān)于它
的中心對稱的任意兩點(diǎn),為該橢圓上的動(dòng)點(diǎn),若直線、均存在斜率,
則它們的斜率之積為定值.(定值)
(3)關(guān)于方程,不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題是:
設(shè)、是方程,不同時(shí)為負(fù)數(shù))的曲線上關(guān)于它的中心對稱的任意兩點(diǎn),為該曲線上的動(dòng)點(diǎn),若直線均存在斜率,則它們的斜率之積為定值.

試題分析:(1)設(shè)橢圓的方程為,半焦距為,
,
橢圓的方程為
(2)關(guān)于橢圓的正確命題是:設(shè)是橢圓上關(guān)于它
的中心對稱的任意兩點(diǎn),為該橢圓上的動(dòng)點(diǎn),若直線均存在斜率,
則它們的斜率之積為定值.
證明如下:
設(shè)點(diǎn),,
直線、的斜率分別為,
,
點(diǎn),在橢圓上,
,且,
, 即
所以,(定值)
(3)關(guān)于方程,不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題是:
設(shè)、是方程不同時(shí)為負(fù)數(shù))的曲線上關(guān)于它的中心對稱的任意兩點(diǎn),為該曲線上的動(dòng)點(diǎn),若直線均存在斜率,則它們的斜率之積為定值.
點(diǎn)評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)注意將斜率用坐標(biāo)表示出來,易于發(fā)現(xiàn)關(guān)系。本題得到一般性結(jié)論,對指導(dǎo)學(xué)生學(xué)習(xí)探究很有裨益。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的離心率,是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,若
右頂點(diǎn),則常數(shù)           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距是2,則=(    )
A.5B.3C.5或3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點(diǎn),離心率,且它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合, 則此橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的離心率,其中一個(gè)頂點(diǎn)坐標(biāo)為,則橢圓的方程為                      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點(diǎn)B和左焦點(diǎn)F,直線l被圓x2y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知, 是橢圓的兩個(gè)焦點(diǎn),點(diǎn)在此橢圓上且,則的面積等于(    )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標(biāo)平面內(nèi),已知點(diǎn),動(dòng)點(diǎn)滿足條件:,則點(diǎn)的軌跡方程是(    ).
A.B.C.()D.

查看答案和解析>>

同步練習(xí)冊答案