【題目】已知四棱錐P﹣ABCD中,底面為矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M為PC中點.
(Ⅰ)在圖中作出平面ADM與PB的交點N,并指出點N所在位置(不要求給出理由);
(Ⅱ)在線段CD上是否存在一點E,使得直線AE與平面ADM所成角的正弦值為 ,若存在,請說明點E的位置;若不存在,請說明理由;
(Ⅲ)求二面角A﹣MD﹣C的余弦值.

【答案】解:(Ⅰ)過M作MN∥BC,交PB于點N,連接AN,如圖,
則點N為平面ADM與PB的交點N(在圖中畫出)
由M為PC中點,得N為PB的中點.
(Ⅱ)因為四棱錐P﹣ABCD中,底面為矩形,PA⊥底面ABCD,
以A為坐標原點,以直線AB,AD,AP所在直線建立空間直角坐標系如圖所示:
則A(0,0,0),P(0,0,1),D(0,1,0),C(2,1,0),M(1, ),
設在線段CD上存在一點E(x,1,0),則
設直線AE與平面AMD所成角為θ,平面AMD的法向量為 ,
,即 ,令z=2,則
因為直線AE與平面ADM所成角的正弦值為 ,
所以 ,所以x=1
所以在線段CD上存在中點E,
使得直線AE與平面AMD所成角的正弦值為
(Ⅲ)設平面CMD的法向量 ,
,即 ,令z′=﹣1,則y′=﹣1,
所以
所以
由圖形知二面角A﹣MD﹣C的平面角是鈍角,
所以二面角A﹣MD﹣C的平面角的余弦值為

【解析】(Ⅰ)過M作MN∥BC,交PB于點N,由此求出結果.(Ⅱ)以A為坐標原點,以直線AB,AD,AP所在直線建立空間直角坐標系,利用向量法能求出在線段CD上存在中點E,使得直線AE與平面AMD所成角的正弦值為 .(Ⅲ)求出平面CMD的法向量和平面AMD的法向量,由此利用向量法能求出二面角A﹣MD﹣C的平面角的余弦值.
【考點精析】掌握直線與平面垂直的判定是解答本題的根本,需要知道一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=k(x+ )與曲線y= 恰有兩個不同交點,記k的所有可能取值構成集合A;P(x,y)是橢圓 上一動點,點P1(x1 , y1)與點P關于直線y=x+l對稱,記 的所有可能取值構成集合B,若隨機地從集合A,B中分別抽出一個元素λ1 , λ2 , 則λ1>λ2的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線相交于A、B兩點.

1)求證:;

2)當的面積等于時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺機器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設這臺機器在購機的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買臺機器的同時應購買個還是個易損零件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x+2sin2x+2sinx.
(Ⅰ)將函數(shù)f(2x)的圖象向右平移 個單位得到函數(shù)g(x)的圖象,若x∈[ , ],求函數(shù)g(x)的值域;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足f(A)= +1,A∈(0, ),a=2 ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系xOy的原點為極點,x軸的非負半軸為極軸建立極坐標系,且兩坐標系相同的長度單位.已知點N的極坐標為( ),M是曲線C1:ρ=1上任意一點,點G滿足 ,設點G的軌跡為曲線C2
(1)求曲線C2的直角坐標方程;
(2)若過點P(2,0)的直線l的參數(shù)方程為 (t為參數(shù)),且直線l與曲線C2交于A,B兩點,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正三角形ABC中,DE,F分別為各邊的中點,G,H分別為DE,AF的中點,將沿DEEF,DF折成正四面體,則在此正四面體中,下列說法正確的是______

異面直線PGDH所成的角的余弦值為;

PD所成的角為;

EF所成角為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某三棱錐的三視圖如圖所示,正視圖和俯視圖都是等腰直角三角形,則該三棱錐中最長的棱長為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1,F(xiàn)2分別是雙曲線的左、右焦點,若F2關于漸近線的對稱點恰落在以F1為圓心為半徑的圓上,則雙曲線C的離心率為 _____

查看答案和解析>>

同步練習冊答案