設(shè)函數(shù),已知關(guān)于的方程的兩個根為,
(1)判斷上的單調(diào)性;
(2)若,證明.
 (1)上是增函數(shù)   (2) 見解析
(1)                   (3分)
    由于當(dāng),
    所以,故上是增函數(shù)                      (4分)
(2)當(dāng)時,并由①得
                             (6分)

                                               
.
同理.                                                  (10分)
于是
從而有.                                (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


 
已知函數(shù)a<0, ,設(shè)關(guān)于x的方程的兩根為,的兩實根為

 (1)若,求a,b關(guān)系式
(2)若a,b均為負(fù)整數(shù),且,求解析式
(3)若<1<<2,求證:<7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為實常數(shù)),且,其圖象和y軸交于A點;數(shù)列為公差為的等差數(shù)列,且;點列
(1)求函數(shù)的表達(dá)式;
(2)設(shè)為直線的斜率,的斜率,求證數(shù)仍為等差數(shù)列;
(3)已知m為一給定自然數(shù),常數(shù)a滿足,求證數(shù)列有唯一的最大項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)滿足,是不為的實常數(shù)。
(1)若函數(shù)是周期函數(shù),寫出符合條件的值;
(2)若當(dāng)時,,且函數(shù)在區(qū)間上的值域是閉區(qū)間,求的取值范圍;
(3)若當(dāng)時,,試研究函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?若可能,求出的取值范圍;若不可能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中a為常數(shù),且
(1)若是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時,設(shè)的反函數(shù)為,且函數(shù)的圖像與 的圖像關(guān)于對稱,求的取值集合B。
(3)對于問題(1)(2)中的A、B,當(dāng)時,不等式
恒成立,求x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)1百件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為5百件,產(chǎn)品銷售數(shù)量為t(百件)時,銷售所得的收入為萬元
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤為當(dāng)年產(chǎn)量x的函數(shù)f(x),求f(x);
(2)當(dāng)該公司的年產(chǎn)量為多大時當(dāng)年所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)的定義域為實數(shù)集,且上是增函數(shù),當(dāng) 時,是否存在實數(shù),使對所有的恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論中正確的個數(shù)是(  )
①當(dāng)a<0時,=a3、=|a| ③函數(shù)y=-(3x-7)0的定義域是(2, +∞)、苋,則2a+b=1
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠為適應(yīng)市場需求,提高效益,特投入98萬元引進先進設(shè)備,并馬上投入生產(chǎn),第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設(shè)備可獲得的年利潤為50萬元。請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進該設(shè)備多少年后,開始盈利?(2)引進該設(shè)備若干年后,有兩種處理方案:第一種:年平均盈利達(dá)到最大值時,以26萬元的價格賣出;第二種:盈利總額達(dá)到最大值時,以8萬元的價格賣出,哪種方案較為合算?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案