(滿分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

(1)要證DM∥平面APC,只需證明MD∥AP(因?yàn)锳P?面APC)即可.
(2)在平面ABC內(nèi)直線AP⊥BC,BC⊥AC,即可證明BC⊥面APC,從而證得平面ABC⊥平面APC;

解析試題分析:解:(1)由已知得,MD是△ABP的中位線   ∴MD∥AP
∵M(jìn)D?面APC,AP?面APC
∴MD∥面APC
(2)∵△PMB為正三角形,D為PB的中點(diǎn),
∴MD⊥PB,∴AP⊥PB  又∵AP⊥PC,PB∩PC=P ∴AP⊥面PBC
∵BC?面PBC ∴AP⊥BC  又∵BC⊥AC,AC∩AP=A
∴BC⊥面APC  ∵BC?面ABC  ∴平面ABC⊥平面APC
考點(diǎn):線面平行和面面垂直
點(diǎn)評(píng):解決的關(guān)鍵是利用線面和面面的平行和垂直的判定定理來分析證明,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為圓的直徑,點(diǎn)、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,⊙O的直徑AB=4,點(diǎn)C、D為⊙O上兩點(diǎn),且∠CAB=45o,F(xiàn)為的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:OF//平面ACD;
(Ⅱ)在上是否存在點(diǎn),使得平面平面ACD?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,,

(Ⅰ)求證:;
(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點(diǎn),PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點(diǎn)G,使EG∥平面PFD,當(dāng)PA=AB=4時(shí),求四面體E-GFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知:如圖,中,,是角平分線。求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四面體中,,且E、F分別是AB、BD的中點(diǎn),

求證:(1)直線EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點(diǎn)。
(I)證明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案