已知函數(shù)在點處的切線方程為
(1)求函數(shù)的解析式;
(2)若對于區(qū)間[-2,2]上任意兩個自變量的值都有求實數(shù)c的最小值.
(1) f(x)=x3-3x. (2) c的最小值為4.
解析試題分析:(1)f′(x)=3ax2+2bx-3.
根據(jù)題意,得
即 解得
所以f(x)=x3-3x.
(2)令f′(x)=0,即3x2-3=0,得x=±1.
因為f(-1)=2,f(1)=-2,x -2 (-2,-1) -1 (-1,1) 1 (1,2) 2 f′(x) + - + f(x) -2 ? 極大值 ? 極小值 ? 2
所以當x∈[-2,2]時,f(x)max=2,f(x)min=-2.
( 需列表格或者說明單調(diào)性,否則扣2分)
則對于區(qū)間[-2,2]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
所以c≥4.即c的最小值為4.
考點:本題主要考查導數(shù)的幾何意義,應用導數(shù)研究函數(shù)的單調(diào)性、最值,待定系數(shù)法。
點評:典型題,本題屬于導數(shù)應用中的基本問題,首先利用待定系數(shù)法,求得函數(shù)解析式,為進一步解題奠定了基礎。利用“表解法”寫出函數(shù)單調(diào)性、極值,直觀明了。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),滿足;
(1)若方程有唯一的解;求實數(shù)的值;
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
定義在上的函數(shù)滿足:①對任意都有;
② 在上是單調(diào)遞增函數(shù);③.
(Ⅰ)求的值;
(Ⅱ)證明為奇函數(shù);
(Ⅲ)解不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分7分)
已知函數(shù)
(Ⅰ)當時,求函數(shù)的定義域;
(Ⅱ)當函數(shù)的定義域為R時,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù) .
(1)解關于x的不等式f(x)<0;
(2)當c=-2時,不等式f(x)>ax-5在上恒成立,求實數(shù)a的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com