分析:本題考查的知識點是數(shù)學歸納法,觀察不等式“
左邊的各項,他們都是以
開始,以
項結束,共n項,當由n=k到n=k+1時,項數(shù)也由k變到k+1時,但前邊少了一項,后面多了兩項,分析四個答案,即可求出結論.
解:n=k時,左邊=
+
+......+
,
n=k時,左邊=
+
+……+
=(
+
+......+
)-
+
+
故選C
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知數(shù)列
中,
,
,
為該數(shù)列的前
項和,且
.
(1)求數(shù)列
的通項公式;
(2)若不等式
對一切正整數(shù)
都成立,求正整數(shù)
的最大值,并證明結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
當
時,
,
(I)求
;
(II)猜想
與
的關系,并用數(shù)學歸納法證明.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前
和為
,其中
且
(1)求
(2)猜想數(shù)列
的通項公式,并用數(shù)學歸納法加以證明.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知數(shù)列
滿足
,且
(
)。
(1) 求
、
、
的值;
(2) 猜想數(shù)列
的通項公式,并用數(shù)學歸納法加以證明。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若
,觀察下列不等式:
,
,…,請你猜測
將滿足的不等式,并用數(shù)學歸納法加以證明。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(14分)
用數(shù)學歸納法證明:
查看答案和解析>>