【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知
(1)求的值
(2)若,b=2,求△ABC的面積S.
【答案】(1);(2)。
【解析】
試題分析:(1)根據正弦定理變形,,,已知條件可轉化為,即,整理得:,根據和角公式,化為,根據三角形內角和為及誘導公式,可以得到,所以;(2)由正弦定理變形及第(1)問可知,,根據余弦定理:,所以,又,所以有,解得,所以,,根據同角三角函數基本關系式由可知,所以三角形面積為。
試題解析:(1)由正弦定理,則=,所以=,
即(cosA-2cosC)sinB=(2sinC-sinA)cosB,化簡可得sin(A+B)=2sin(B+C).
因為A+B+C=π,所以sinC=2sinA.
因此
(2)由=2,得c=2a,由余弦定理b2=a2+c2-2accosB及cosB=,b=2,
得4=a2+4a2-4a2×.解得a=1,從而c=2.
因為cosB=,所以sinB=,
因此S=acsinB=×1×2×=.
科目:高中數學 來源: 題型:
【題目】若pVq是假命題,則( )
A. p,q至少有一個是假命題 B. p,q 均為假命題
C. p,q中恰有一個是假命題 D. p,q至少有一個是真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線f(x)=x3+x﹣2在p0處的切線平行于直線y=4x﹣1,則p0的坐標為( )
A. (1,0) B. (2,8)
C. (1,0)或(﹣1,﹣4) D. (2,8)或(﹣1,﹣4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來我國電子商務行業(yè)迎來發(fā)展的新機遇.2016年“618”期間,某購物平臺的銷售業(yè)績高達516億元人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)選完成關于商品和服務評價的列聯表,再判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全為好評的次數為隨機變量:
①求對商品和服務全為好評的次數的分布列;
②求的數學期望和方差.
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值:(其中)關于商品和服務評價的列聯表:
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 80 | ||
對商品不滿意 | 10 | ||
合計 | 200 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出;當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金為多少元時,租賃公司的月收益最大?最大收益為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知橢圓短軸的兩個頂點與右焦點的連線構成等邊三角形,直線與圓相切.
(1)求橢圓的方程;
(2)已知橢圓的左頂點的兩條直線分別交橢圓于兩點,且,求證:直線過定點,并求出定點坐標;
(3)在(2)的條件下求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從孝感地區(qū)中小學生中抽取部分學生,進行肺活量調查.經了解,該地區(qū)小學、初中、高中三個學段學生的肺活量有較大差異,而同一學段男女生的肺活量差異不大.在下面的抽樣方法中,最合理的抽樣方法是( )
A. 簡單的隨機抽樣 B. 按性別分層抽樣 C. 按學段分層抽樣 D. 系統(tǒng)抽樣
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com