(本大題共15分) 如圖,F(xiàn)是橢圓的一個(gè)焦點(diǎn),A,B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)C在x軸上,

,B、C、F三點(diǎn)確定的圓M恰好與

直線相切.(1)求橢圓的方程;

(2)過點(diǎn)A的直線與圓M交于P、Q兩點(diǎn),

,求直線的方程.

(Ⅰ)    (Ⅱ)


解析:

(1)由已知得,,,,,…2分

所以圓M的方程為,2分圓M與直線,

解得,所以橢圓的方程為.…3分

(2)點(diǎn),圓M的方程為,過點(diǎn)A斜率不存在的直線與圓不相交,設(shè)直線的方程為,由,

所以圓心到直線的的距離為1,得,

所求直線的方程為.……8分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本大題共15分)已知上是增函數(shù),上是減函數(shù).(1)求的值;(2)設(shè)函數(shù)上是增函數(shù),且對(duì)于內(nèi)的任意兩個(gè)變量,恒有成立,求實(shí)數(shù)的取值范圍;(3)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共15分)如圖直角中,,,點(diǎn)在邊上,橢圓為焦點(diǎn)且經(jīng)過.現(xiàn)以線段所在直線為軸,其中中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.

(1)求橢圓的方程;

(2)為橢圓內(nèi)的一定點(diǎn),點(diǎn)是橢圓上的一動(dòng)點(diǎn).求的最值.

(3)設(shè)橢圓分別與正半軸交于兩點(diǎn),且與橢圓相交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共15分)如圖直角中,,,,點(diǎn)在邊上,橢圓為焦點(diǎn)且經(jīng)過.現(xiàn)以線段所在直線為軸,其中中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.

(1)求橢圓的方程;

(2)為橢圓內(nèi)的一定點(diǎn),點(diǎn)是橢圓上的一動(dòng)點(diǎn).求的最值.

(3)設(shè)橢圓分別與正半軸交于兩點(diǎn),且與橢圓相交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共15分)如圖直角中,,,,點(diǎn)在邊上,橢圓為焦點(diǎn)且經(jīng)過.現(xiàn)以線段所在直線為軸,其中中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.

(1)求橢圓的方程;

(2)為橢圓內(nèi)的一定點(diǎn),點(diǎn)是橢圓上的一動(dòng)點(diǎn).求的最值.

(3)設(shè)橢圓分別與正半軸交于兩點(diǎn),且與橢圓相交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案