【題目】已知向量 , ,函數(shù) , .
(1)若 的最小值為-1,求實(shí)數(shù) 的值;
(2)是否存在實(shí)數(shù) ,使函數(shù) 有四個不同的零點(diǎn)?若存在,求出 的取值范圍;若不存在,請說明理由.

【答案】
(1)解:∵ ,

,

,令

,對稱軸為 ,

①當(dāng) 時,當(dāng) 時, 舍,

②當(dāng) 時,當(dāng) 時,

③當(dāng) 是,當(dāng) 時, 舍,

綜上, .


(2)解:令 ,即

,

有四個不同的零點(diǎn),

∴方程 上共有四個不同的實(shí)根,

.


【解析】(1)根據(jù)向量的數(shù)量積坐標(biāo)運(yùn)算公式結(jié)合兩角和差的正弦公式整理原式可得=cos2x,再結(jié)合向量坐標(biāo)的線性運(yùn)算求出的坐標(biāo),進(jìn)而求出其模的值,然后得出f(x) 的代數(shù)式f ( x ) = cos 2 x 2 m cos x + 1 = 2 cos2 x 2 m cos x,令 t = cos x由角的取值范圍得出t的取值范圍t∈ [ , 1 ] ,根據(jù)二次函數(shù)在指定區(qū)間上的最值 ymin = 1 得出對稱軸 t = ,分類討論求解得出m的值。(2)利用(1)的結(jié)論求出 g(x) 的解析式求出cosx的值,令函數(shù)y=cosx再區(qū)間有四個不同的零點(diǎn),利用函數(shù)與方程的關(guān)系,將實(shí)根轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)問題求解即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0= ,則下列判斷正確的是(
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=cos(x+ )的圖象,只需把余弦曲線y=cosx上的所有的點(diǎn)( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若命題p為真命題,命題q為假命題,則命題“p且q”為真命題
B.“ ”是“ ”的充分不必要條件
C.l為直線,α,β,為兩個不同的平面,若l⊥α,α⊥β,則l∥β
D.命題“?x∈R,2x>0”的否定是“?x0∈R, ≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)P與兩定點(diǎn)A(﹣2,0),B(2,0)連線的斜率之積為﹣ . (Ⅰ)求動點(diǎn)P的軌跡C的方程;
(Ⅱ)若過點(diǎn)F(﹣ ,0)的直線l與軌跡C交于M、N兩點(diǎn),且軌跡C上存在點(diǎn)E使得四邊形OMEN(O為坐標(biāo)原點(diǎn))為平行四邊形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an]的前n項(xiàng)和記為Sn , 且滿足Sn=2an﹣n,n∈N* (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明: +… (n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y2=4x的焦點(diǎn)為F,直線l過F且依次交拋物線及圓(x﹣1)2+y2= 于點(diǎn)A,B,C,D四點(diǎn),則9|AB|+4|CD|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=|x2﹣2ax|,方程f(x)=ax+a的四個實(shí)數(shù)解滿足x1<x2<x3<x4
(1)求a的取值范圍;
(2)證明:f(x4)> +8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放a(1≤a≤4且a∈R)個單位的營養(yǎng)液,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)= ,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達(dá)幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放b個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求b的最小值.

查看答案和解析>>

同步練習(xí)冊答案