設(shè)函數(shù)f(x)=x2ex+ax3+bx2在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=(3e-3)x-2e+
53

(l)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)-3ex+3x,求g(x)在[-4,t]上的最小值.
分析:(1)已知切線(xiàn)方程包含兩層含義:一是該點(diǎn)的導(dǎo)數(shù)值等于切線(xiàn)的斜率;二是該點(diǎn)的函數(shù)值,故可以求出函數(shù)解析式;
(2)利用導(dǎo)數(shù)的方法解決函數(shù)區(qū)間上的最小值問(wèn)題,注意分類(lèi)討論.
解答:解:(1)f′(x)=2xex+x2ex+3ax2+2bx,∴
f/(1)=3e-3
f(1)=e-
4
3
,
解得
a=-
1
3
b=-1
,∴函數(shù)f(x)=x2ex-
1
3
x3-x2;
(2)g(x)=x2ex-
1
3
x3-x2-3ex+3x,g′(x)=(ex-1)(x+3)(x-1),
∴易得g(x)min=
(t2-3)et-
4
3
t3 -t2+3t(-4<t<-3)
6
e3
-9(t≥-3)
點(diǎn)評(píng):導(dǎo)數(shù)的幾何意義,是指函數(shù)在點(diǎn)處的導(dǎo)數(shù)就是點(diǎn)處的切線(xiàn)的斜率,利用導(dǎo)數(shù)與切線(xiàn)的斜率之間的關(guān)系是處理解析幾何有關(guān)問(wèn)題的重點(diǎn),也是導(dǎo)數(shù)知識(shí)應(yīng)用的重要方面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線(xiàn)y=f(x)在x=1處的切線(xiàn)為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案