如圖,已知直線的右焦點(diǎn)F,且交橢圓CA,B兩點(diǎn),點(diǎn)A,F,B在直線上的射影依次為點(diǎn)D,K,E.
(1)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)連接AE,BD,證明:當(dāng)m變化時(shí),直線AEBD相交于一定點(diǎn)。
(1)   (2)見解析 
(1)易知

………………6分
(2)
先探索,當(dāng)m=0時(shí),直線Lox軸,則ABED為矩形,由對(duì)稱性知,AEBD相交FK中點(diǎn)N,且
猜想:當(dāng)m變化時(shí),AEBD相交于定點(diǎn)……………………8分
證明:設(shè)
當(dāng)m變化時(shí)首先AE過定點(diǎn)N



AN、E三點(diǎn)共線
同理可得BN、D三點(diǎn)共線
AEBD相交于定點(diǎn)……………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

P為橢圓上一點(diǎn),左、右焦點(diǎn)分別為F1,F(xiàn)2
(1)若PF1的中點(diǎn)為M,求證
(2)若,求之值。
(3)求 的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題15分)已知橢圓的右焦點(diǎn)恰好是拋物線的焦點(diǎn),
點(diǎn)是橢圓的右頂點(diǎn).過點(diǎn)的直線交拋物線兩點(diǎn),滿足,
其中是坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)過橢圓的左頂點(diǎn)軸平行線,過點(diǎn)軸平行線,直線
相交于點(diǎn).若是以為一條腰的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角三角形的直角頂點(diǎn)為動(dòng)點(diǎn),,為兩個(gè)定點(diǎn),作,動(dòng)點(diǎn)滿足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),設(shè)點(diǎn)的軌跡為曲線,曲線軸正半軸的交點(diǎn)為
(Ⅰ) 求曲線的方程;
(Ⅱ) 是否存在方向向量為m的直線,與曲線交于兩點(diǎn),且 與的夾角為?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點(diǎn),且線段AB的中點(diǎn),在直線上.(1)求此橢圓的離心率;(2)若橢圓的右焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的在圓上,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,中心在原點(diǎn)O的橢圓的右焦點(diǎn)為F(3,0),
右準(zhǔn)線l的方程為:x = 12。
(1)求橢圓的方程;(4分)
(2)在橢圓上任取三個(gè)不同點(diǎn),使,
證明: 為定值,并求此定值。(8分)


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線的右焦點(diǎn)F,且交橢圓CA,B兩點(diǎn),點(diǎn)AF,B在直線上的射影依次為點(diǎn)DK,E.
(1)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)對(duì)于(1)中的橢圓C,若直線Ly軸于點(diǎn)M,且,當(dāng)m變化時(shí),求的值;
(3)連接AEBD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出N點(diǎn)的坐標(biāo),并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓+=1上到兩個(gè)焦點(diǎn)距離之積最大的點(diǎn)的坐標(biāo)是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓方程為,則這個(gè)橢圓的焦距為(     )
A.6B.2C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案