(08年揚州中學) 已知等腰三角形PDCB中(如圖1),PB=3,DC=1,PD=BC=,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使面PAD⊥面ABCD(如圖2).

   (1)證明:平面PAD⊥PCD;

   (2)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分

 

解析:(1)證明:依題意知:

 

   (2)由(I)知平面ABCD ∴平面PAB⊥平面ABCD.      

     在PB上取一點M,作MNAB,則MN⊥平面ABCD,

       設MN=h

                           

       要使。MPB的中點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)  中,角A、B、C所對的邊分別為、、,已知

(1)求的值;(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學) 已知數(shù)列,中,,且是函數(shù)

的一個極值點.

(1)求數(shù)列的通項公式;

(2) 若點的坐標為(1,)(,過函數(shù)圖像上的點 的切線始終與平行(O 為原點),求證:當 時,不等式

對任意都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)

    

     (1)推導sin3α關于sinα的表達式;

(2)求sin18°的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)已知函數(shù).

(1)求證:函數(shù)內(nèi)單調遞增;

(2)若關于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學) (16分)

表示數(shù)列從第項到第項(共項)之和.

(1)在遞增數(shù)列中,是關于的方程為正整數(shù))的兩個根.求的通項公式并證明是等差數(shù)列;

(2)對(1)中的數(shù)列,判斷數(shù)列,,…,的類型;

(3)對一般的首項為,公差為的等差數(shù)列,提出與(2)類似的問題,你可以得到怎樣的結論,證明你的結論.

 

查看答案和解析>>

同步練習冊答案