【題目】三棱錐P﹣ABC的四個(gè)頂點(diǎn)都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,則球O的表面積為( )
A.13π
B.17π
C.52π
D.68π
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對(duì)任意的實(shí)數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為.
(1)求的單調(diào)遞增區(qū)間;
(2)在中,角的對(duì)邊分別是滿足,求函數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱中,側(cè)棱, , 分別為棱的中點(diǎn), 分別為線段和的中點(diǎn).
(1)求證:直線平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,P,Q分別為AB,DA上動(dòng)點(diǎn),且△APQ的周長(zhǎng)為2,設(shè) AP=x,AQ=y.
(1)求x,y之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)判斷∠PCQ的大小是否為定值?并說(shuō)明理由;
(3)設(shè)△PCQ的面積分別為S,求S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是邊長(zhǎng)為4的等邊三角形,D為AB邊中點(diǎn),且CC1=2AB.
(1)求證:平面C1CD⊥平面ABC;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D﹣CAB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率與雙曲線: 的離心率互為倒數(shù),且經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,已知是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且與交于點(diǎn), 為坐標(biāo)原點(diǎn),求證: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.
(Ⅰ)證明:平面ADB⊥平面BDC;
(Ⅱ)設(shè)BD=1,求三棱錐D﹣ABC的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)滿足以下條件:①定義在正實(shí)數(shù)集上;②f( )=2;③對(duì)任意實(shí)數(shù)t,都有f(xt)=tf(x)(x∈R+).
(1)求f(1),f( )的值;
(2)求證:對(duì)于任意x,y∈R+ , 都有f(xy)=f(x)+f(y);
(3)若不等式f(loga(x﹣3a)﹣1)﹣f(﹣ )≥﹣4對(duì)x∈[a+2,a+ ]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com