【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時(shí),.若對(duì)于任意,都有,則實(shí)數(shù)的取值范圍為________

【答案】

【解析】

fx)為周期為4的函數(shù),且是奇函數(shù).0在函數(shù)定義域內(nèi),故f0)=0,得a1,先得到[1,3]一個(gè)周期內(nèi)fx)的圖象,求出該周期內(nèi)使fx)≥1log23成立的x的范圍,從而推出的范圍,再分t的范圍討論即可.

解:由題意,fx)為周期為4的函數(shù),且是奇函數(shù).0在函數(shù)定義域內(nèi),故f0)=0,得a1,

所以當(dāng)0x1時(shí),fx)=log2x+1),

當(dāng)x[1,0]時(shí),﹣x[0,1],此時(shí)fx)=﹣f(﹣x)=﹣log2(﹣x+1),

又知道fx+2)=﹣fx)=f(﹣x),

所以fx)以x1為對(duì)稱軸.且當(dāng)x[11]時(shí)fx)單調(diào)遞增,

當(dāng)x[1,3]時(shí)fx)單調(diào)遞減.

當(dāng)x[1,3]時(shí),令fx)=1log23,得x,或x,

所以在[1,3]內(nèi)當(dāng)fx)>1log23時(shí),x[,]

設(shè)gx,若對(duì)于x屬于[0,1]都有

因?yàn)?/span>g0[,]

gx[,]

當(dāng)0時(shí),gx)在[0,1]上單調(diào)遞減,

gx[t][,].得t0,無(wú)解.

0t1時(shí),,此時(shí)gt)最大,g1)最小,

gx[t1][,].得t[0,1]

當(dāng)1t2時(shí),即,此時(shí)g0)最小,gt)最大,

gx[][,].得t12],

當(dāng)t2時(shí),gx)在[0,1]上單調(diào)遞增,

gx[t][,].解得,t2,3]

綜上t[0,3]

故填:[0,3]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的參數(shù)方程;

(2)若曲線與曲線,在第一象限分別交于兩點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)為了解四年級(jí)學(xué)生的家庭作業(yè)用時(shí)情況,從本校四年級(jí)隨機(jī)抽取了一批學(xué)生進(jìn)行調(diào)查,并繪制了學(xué)生作業(yè)用時(shí)的頻率分布直方圖,如圖所示.

(1)估算這批學(xué)生的作業(yè)平均用時(shí)情況;

(2)作業(yè)用時(shí)不能完全反映學(xué)生學(xué)業(yè)負(fù)擔(dān)情況,這與學(xué)生自身的學(xué)習(xí)習(xí)慣有很大關(guān)系如果用時(shí)四十分鐘之內(nèi)評(píng)價(jià)為優(yōu)異,一個(gè)小時(shí)以上為一般,其它評(píng)價(jià)為良好.現(xiàn)從優(yōu)異和良好的學(xué)生里面用分層抽樣的方法抽取300人,其中女生有90人(優(yōu)異20人).請(qǐng)完成列聯(lián)表,并根據(jù)列聯(lián)表分析能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為學(xué)習(xí)習(xí)慣與性別有關(guān)系?

男生

女生

合計(jì)

良好

優(yōu)異

合計(jì)

附:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓

1)若直線過(guò)定點(diǎn),且與圓C相切,求的方程.

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)總體容量為60,其中的個(gè)體編號(hào)為0001,02,59.現(xiàn)需從中抽取一個(gè)容量為7的樣本,請(qǐng)從隨機(jī)數(shù)表的倒數(shù)第5(下表為隨機(jī)數(shù)表的最后5)1112列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號(hào)碼是_____________

95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95

38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80

82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50

24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49

96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各名,將男性、女性使用微信的時(shí)間分成組:,,,,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)根據(jù)女性頻率分布直方圖,估計(jì)女性使用微信的平均時(shí)間;

(2)若每天玩微信超過(guò)小時(shí)的用戶列為微信控,否則稱其為非微信控,請(qǐng)你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為微信控性別有關(guān)?

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收增長(zhǎng)情況,則下列說(shuō)法錯(cuò)誤的是( )

A. 2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收均逐年增加

B. 2016年我國(guó)數(shù)字出版業(yè)營(yíng)收超過(guò)2012年我國(guó)數(shù)字出版業(yè)營(yíng)收的2倍

C. 2016年我國(guó)新聞出版業(yè)營(yíng)收超過(guò)2012年我國(guó)新聞出版業(yè)營(yíng)收的1.5倍

D. 2016年我國(guó)數(shù)字出版營(yíng)收占新聞出版營(yíng)收的比例未超過(guò)三分之一

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.

1)求橢圓的方程及離心率的值;

2)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).,且,求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案