在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PA=AB=4,點(diǎn)N在線段PB上,且=.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐PABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F,H分別是線段PA,PD,AB的中點(diǎn).
(1)求證:PB∥平面EFH;
(2)求證:PD⊥平面AHF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正三棱柱ABCA1B1C1中,已知AB=A1A,D為C1C的中點(diǎn),O為A1B與AB1的交點(diǎn).
(1)求證:AB1⊥平面A1BD;
(2)若點(diǎn)E為AO的中點(diǎn),求證:EC∥平面A1BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)M在AD1上移動(dòng),點(diǎn)N在BD上移動(dòng),D1M=DN=a(0<a<),連接MN.
(1)證明對任意a∈(0,),總有MN∥平面DCC1D1.
(2)當(dāng)a為何值時(shí),MN的長最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),F是AB的中點(diǎn),AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M為A1B與AB1的交點(diǎn),N為棱B1C1的中點(diǎn),
(1)求證:MN∥平面AA1C1C;
(2)若AC=AA1,求證:MN⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,中,平面外一條線段AB滿足AB∥DE,AB,AB⊥AC,F(xiàn)是CD的中點(diǎn).
(1)求證:AF∥平面BCE
(2)若AC=AD,證明:AF⊥平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱臺(tái)ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,,E為中點(diǎn),
(1)求證;CE∥平面,
(2)求證:求二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com