如圖所示,在棱長為1的正方體的面對角線上存在一點使得最短,則的最小值為(    )
A.B.C.D.
B

試題分析:如圖所示,把對角面A1C繞A1B旋轉(zhuǎn)至A1BC′D1′,
使其與△AA1B在同一平面上,連接AD1′,

則AD1′==為所求的最小值.故選B.
點評:中檔題,將空間問題轉(zhuǎn)化成平面問題,是解答立體幾何問題的一種常見思路。本題利用對稱性,在三角形中應用余弦定理,凸顯所學知識應用的靈活性。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在棱長為1的正方體中,的中點,點為側(cè)面內(nèi)一動點(含邊界),若動點始終滿足,則動點的軌跡的長度為__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方形中,沿對角線將正方形折成一個直二面角,則點到直線的距離為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、、表示三條不同的直線,表示平面,給出下列命題:
①若,,則;     ②若,則;
③若,,則;   ④若,則
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在長方體ABCD-A1B1C1D1中,AB=1,AD=2.若存在各棱長均相等的四面體P1P2P3P4,其中P1,P2,P3,P4分別在棱AB,A1B1,C1D1,CD所在的直線上,則此長方體的體積為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在多面體中,四邊形是邊長為2的正方形,平面平面,平面都與平面垂直,且、都是正三角形。

(1)求證:;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,,
求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)m,n是兩條不同直線,是兩個不同的平面,給出下列四個命題
①若                 ②
③若     ④若
其中正確的命題是              (       )
A.①B.②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面,,,分別為的中點.

(I)證明:平面;
(II)求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案