設函數(shù)f(x)=alnx-bx2(x>0),若函數(shù)f(x)在x=1處與直線y=-
1
2
相切.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)在[
1
e
,e]上的最大值.
(1)∵函數(shù)f(x)=alnx-bx2(x>0),∴f′(x)=
a
x
-2bx,
∵函數(shù)f(x)在x=1處與直線y=-
1
2
相切,
f′(1)=a-2b=0
f(1)=-b=-
1
2
,解得
a=1
b=
1
2
;
(2)f(x)=lnx-
1
2
x2,f′(x)=
1-x2
x
,
1
e
≤x≤e時,令f'(x)>0得
1
e
≤x<1,
令f'(x)<0,得1<x≤e,
∴f(x)在[
1
e
,1],上單調遞增,
在[1,e]上單調遞減,
∴f(x)max=f(1)=-
1
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx+c在x=2處取得極值為c=16.
(1)求a、b的值;
(2)若f(x)有極大值28,求f(x)在[-3,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
x2+lnx.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)求證:當x>1時,
1
2
x2+lnx<
2
3
x3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax.
(1)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若a=2,求f(x)在閉區(qū)間[0,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函f(x)=x3+ax2+bx+5,若x=
2
3
,y=f(x)有極值,且曲線y=f(x)在點(1,f(1))處的切線斜率為3.
(1)求函數(shù)f(x)的解析式;
(2)求y=f(x)在[-4,1]上的最大值和最小值.
(3)函數(shù)y=f(x)-m有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在點x0處取得極大值4,其導函數(shù)y=f′(x)的圖象經(jīng)過點(0,0),(2,0),如圖,
(1)求a,b,c的值;
(2)若x∈[-1,1],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(1)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)求函數(shù)f(x)在[1,e]上的最小值及相應的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=xex,其中x∈R.
(Ⅰ)求曲線f(x)在點(x0,x0ex0)處的切線方程
(Ⅱ)如果過點(a,b)可作曲線y=f(x)的三條切線
(1)當-2<a<0時,證明:-
1
e2
(a+4)<b<f(a);
(2)當a<-2時,寫出b的取值范圍(不需要書寫推證過程).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在R上可導,,則(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案