【題目】已知點(diǎn)是圓內(nèi)一點(diǎn),直線.
(1)若圓的弦恰好被點(diǎn)平分,求弦所在直線的方程;
(2)若過點(diǎn)作圓的兩條互相垂直的弦,求四邊形的面積的最大值;
(3)若, 是上的動點(diǎn),過作圓的兩條切線,切點(diǎn)分別為.證明:直線過定點(diǎn).
【答案】(1) (2)11(3)見解析
【解析】試題分析:(1)由題意知,易知,進(jìn)而得到弦所在直線的方程;
(2)設(shè)點(diǎn)到直線、的距離分別為,則, ,利用條件二元變一元,轉(zhuǎn)為二次函數(shù)最值問題;
(3)設(shè).該圓的方程為,利用C、D在圓O: 上,求出CD方程,利用直線系求解即可.
試題解析:
(1)由題意知,∴,∵,∴,
因此弦所在直線方程為,即.
(2)設(shè)點(diǎn)到直線、的距離分別為,則,
, .
∴ ,
,當(dāng)時(shí)取等號.
所以四邊形面積的最大值為11.
(3)由題意可知、兩點(diǎn)均在以為直徑的圓上,設(shè),
則該圓的方程為,即: .
又、在圓上,
所以直線的方程為,即,
由得,所以直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在(﹣∞,+∞)上的奇函數(shù).
(1)求a的值;
(2)當(dāng)x∈(0,1]時(shí),tf(x)≥2x﹣2恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是A1B1上一點(diǎn),若平面EBD與平面ABCD所成銳二面角的正切值為 ,設(shè)三棱錐A﹣A1D1E外接球的直徑為a,則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐A﹣BCD的所有棱長均為6,點(diǎn)P在AC上,且AP=2PC,過P作四面體的截面,使截面平行于直線AB和CD,則該截面的周長為( )
A.16
B.12
C.10
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中, , , , 為線段的中點(diǎn),將沿折起,使平面平面,得到幾何體.
(1)若分別為線段的中點(diǎn),求證: 平面;
(2)求證: 平面;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓A:(x+1)2+y2=8,動圓M經(jīng)過點(diǎn)B(1,0),且與圓A相切,O為坐標(biāo)原點(diǎn).
(Ⅰ)求動圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點(diǎn)M,且l與x軸、y軸分別交于P、Q兩點(diǎn),若 =λ ,且λ∈[ ,2],求△OPQ面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=ax3+bx2+cx+d(a≠0)的導(dǎo)函數(shù)為f(x),a+b+c=0,且f(0)f(1)>0,設(shè)x1 , x2是方程f(x)=0的兩個(gè)根,則|x1﹣x2|的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有實(shí)根?如果有實(shí)根,請求出一個(gè)長度為的區(qū)間,使;如果沒有,請說明理由(注:區(qū)間的長度)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com