【題目】已知三棱臺中, , , ,平面平面,

(1)求證: 平面;

(2)點(diǎn)上一點(diǎn),二面角的大小為,求與平面所成角的正弦值.

【答案】(1)見解析;(2)

【解析】試題分析:(1)延長 , 交于點(diǎn).通過證明線和平面內(nèi)的兩條相交直線垂直,證明平面

(2)以為坐標(biāo)原點(diǎn), , , , , 軸的正方向建立空間直角坐標(biāo)系,計(jì)算即可.

試題解析:(1)延長 , 交于點(diǎn)

及棱臺性質(zhì)得,所以

因?yàn)槠矫?/span>平面平面

所以平面, 平面,所以,

,所以, ,所以平面

(2)由于,由 ,所以,且

為坐標(biāo)原點(diǎn), , , , 軸的正方向建立空間直角坐標(biāo)系,如圖:則, , , ,

設(shè)

設(shè)平面的法向量為,

,可取

是平面的個(gè)法向量,

由二面角的大小為得:

所以中點(diǎn), , ,

設(shè)與平面所成角為,則

所以與平面所成角為正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的道物理題中隨機(jī)抽取道化學(xué)題中隨機(jī)抽取;道生物題中隨機(jī)抽取.使用合適的方法確定這個(gè)學(xué)生所要回答的三門學(xué)科的題的序號(物理題的編號為,化學(xué)題的編號為,生物題的編號為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,EAB的中點(diǎn),FAA1的中點(diǎn).求證:CED1F,DA三線交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式;

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在處的切線與直線平行,則實(shí)數(shù)____

當(dāng)a≤0時(shí),若方程有且只有一個(gè)實(shí)根,則實(shí)數(shù)的取值范圍為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:

(Ⅰ)如果成績大于135的為特別優(yōu)秀,隨機(jī)抽取的500名學(xué)生在本次考試中語文、數(shù)學(xué)成績特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的)

(Ⅱ)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中至少有一科成績特別優(yōu)秀的同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

(附公及表)

①若,則, ;

, ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求證:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ),設(shè)方程, 的實(shí)根的個(gè)數(shù)為分別為、,則

A. 9 B. 13 C. 17 D. 21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性并證明;

3)若對任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案