【題目】20201月底因新型冠狀病毒感染的肺炎疫情形勢嚴(yán)峻,避免外出是減少相互交叉感染最有效的方式.在家中適當(dāng)鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區(qū)為了調(diào)查家居民的運(yùn)動情況,從該小區(qū)隨機(jī)抽取了100位成年人,記錄了他們某天的鍛煉時間,其頻率分布直方圖如下:

1)求a的值,并估計這100位居民鍛煉時間的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)小張是該小區(qū)的一位居民,他記錄了自己7天的鍛煉時長:

序號n

1

2

3

4

5

6

7

鍛煉時長m(單位:分鐘)

10

15

12

20

30

25

35

)根據(jù)數(shù)據(jù)求m關(guān)于n的線性回歸方程;

)若是(1)中的平均值),則當(dāng)天被稱為有效運(yùn)動日.估計小張家第8天是否是有效運(yùn)動日?

附;在線性回歸方程中,,

【答案】(1),30.2;(2)(Ⅰ),(Ⅱ)估計小張家第8天是有效運(yùn)動日

【解析】

1)根據(jù)頻率分布直方圖的特征,各小矩形面積之和為1,即可求出a的值,再根據(jù)平均值等于各小矩形的面積乘以其底邊中點(diǎn)的橫坐標(biāo)之和,即可求出;

2)()根據(jù)最小二乘法,分別計算出,即可求出m關(guān)于n的線性回歸方程;

)根據(jù)線性回歸方程,令,求出預(yù)測值,再驗(yàn)證是否滿足,即可判斷.

1

(分鐘).

2)(,

,

,

,,

關(guān)于n的線性回歸方程為

)當(dāng)時,

,

估計小張家第8天是有效運(yùn)動日

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)綠色出行,某市推出了新能源分時租賃汽車,并對該市市民使用新能源租賃汽車的態(tài)度進(jìn)行調(diào)查,得到有關(guān)數(shù)據(jù)如下表1

1

愿意使用新能源租賃汽車

不愿意使用新能源租賃汽車

總計

男性

100

300

女性

400

總計

400

其中一款新能源分時租賃汽車的每次租車費(fèi)用由行駛里程和用車時間兩部分構(gòu)成:行駛里程按1/公里計費(fèi);用車時間不超過30分鐘時,按0.15/分鐘計費(fèi);超過30分鐘時,超出部分按0.20/分鐘計費(fèi).已知張先生從家到上班地點(diǎn)15公里,每天上班租用該款汽車一次,每次的用車時間均在20~60分鐘之間,由于堵車紅綠燈等因素,每次的用車時間(分鐘)是一個隨機(jī)變量.張先生記錄了100次的上班用車時間,并統(tǒng)計出在不同時間段內(nèi)的頻數(shù)如下表2

2

時間(分鐘)

20,30]

3040]

40,50]

50,60]

頻數(shù)

20

40

30

10

1)請補(bǔ)填表1中的空缺數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為該市市民對新能源租賃汽車的使用態(tài)度與性別有關(guān);

2)根據(jù)表2中的數(shù)據(jù),將各時間段發(fā)生的頻率視為概率,以各時間段的區(qū)間中點(diǎn)值代表該時間段的取值,試估計張先生租用一次該款汽車上班的平均用車時間;

3)若張先生使用滴滴打車上班,則需要車費(fèi)27元,試問:張先生上班使用滴滴打車和租用該款汽車,哪一種更合算?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,P為線段上的動點(diǎn),下列說法正確的是(

A.對任意點(diǎn)P,平面

B.三棱錐的體積為

C.線段DP長度的最小值為

D.存在點(diǎn)P,使得DP與平面所成角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的角A,B,C的對邊分別為ab,c,已知.

1)求角A;

2)從三個條件:①;②;③的面積為中任選一個作為已知條件,求周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱臺中,底面是菱形,底面,且60°,是棱的中點(diǎn).

1)求證:;

2)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)與拋物線的焦點(diǎn)重合,其離心率.作兩條相互垂直的直線,且交拋物線,兩點(diǎn),交橢圓于另一點(diǎn).

1)求的值;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,、分別為橢圓長軸的左、右端點(diǎn),為直線上異于點(diǎn)的任意一點(diǎn),連接交橢圓于點(diǎn).

1)若,求直線的方程;

2)是否存在軸上的定點(diǎn)使得以為直徑的圓恒過的交點(diǎn)?如果存在,請求出定點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),點(diǎn)的軌跡記為曲線

1)求曲線的方程;

2)過的直線交曲線于不同的,兩點(diǎn),交軸于點(diǎn),已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,E為邊的中點(diǎn),將沿直線翻轉(zhuǎn)成平面.M、O分別為線段、的中點(diǎn),則在翻轉(zhuǎn)過程中,下列說法錯誤的是(

A.與平面垂直的直線必與直線垂直;

B.異面直線所成角是定值;

C.一定存在某個位置,使;

D.三棱錐外接球半徑與棱的長之比為定值;

查看答案和解析>>

同步練習(xí)冊答案