【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為(  )
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

【答案】A
【解析】解:方法1:∵yi=xi+a,

∴E(yi)=E(xi)+E(a)=1+a,

方差D(yi)=D(xi)+E(a)=4.

方法2:由題意知yi=xi+a,

= (x1+x2+…+x10+10×a)= (x1+x2+…+x10)= +a=1+a,

方差s2= [(x1+a﹣( +a)2+(x2+a﹣( +a)2+…+(x10+a﹣( +a)2]= [(x12+(x22+…+(x102]=s2=4.

所以答案是:A.

【考點精析】通過靈活運用平均數(shù)、中位數(shù)、眾數(shù)和極差、方差與標準差,掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù);標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列結(jié)論中: ①函數(shù)y=sin(kπ﹣x)(k∈Z)為奇函數(shù);
②函數(shù) 的圖象關(guān)于點 對稱;
③函數(shù) 的圖象的一條對稱軸為 π;
④若tan(π﹣x)=2,則cos2x=
其中正確結(jié)論的序號為(把所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Ω:x2=2py(p>0),過點(0,2p)的直線與拋物線Ω交于A、B兩點,AB的中點為M,若點M到直線y=2x的最小距離為 ,則p=(  )
A.
B.1
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣ax,
(Ⅰ)當b=1時,求g(x)的最大值;
(Ⅱ)若對x∈[0,+∞),f(x)≤0恒成立,求a的取值范圍;
(Ⅲ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項和為Sn , 且 (a∈N+).
(1)求a的值及數(shù)列{an}的通項公式;
(2)設(shè) ,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點P在曲線y= ex上,點Q在曲線y=ln(2x)上,則|PQ|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公差不為0的等差數(shù)列{an}的前n項和為Sn , 若a2 , a5 , a14成等比數(shù)列, ,則a10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系xOy中,橢圓C: 的離心率是 ,
拋物線E:x2=4y的焦點F是C的一個頂點.

(1)求橢圓C的方程;
(2)設(shè)與坐標軸不重合的動直線l與C交于不同的兩點A和B,與x軸交于點M,且 滿足kPA+kPB=2kPM , 試判斷點M是否為定點?若是定點求出點M的坐標;若不是定點請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m>1,直線l:x﹣my﹣ =0,橢圓C: +y2=1,F(xiàn)1、F2分別為橢圓C的左、右焦點.
(Ⅰ)當直線l過右焦點F2時,求直線l的方程;
(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,△AF1F2 , △BF1F2的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案