【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發(fā)展共享單車隨機調查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如下表:

年齡

受訪人數(shù)

5

6

15

9

10

5

支持發(fā)展共享單車人數(shù)

4

5

12

9

7

3

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系:

年齡低于35歲

年齡不低于35歲

合計

支持

不支持

合計

(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在的被調查人中隨機選取一人進行調查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中

【答案】(Ⅰ)不能在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系;(Ⅱ)

【解析】試題分析:(1)將數(shù)據(jù)代入,計算出,與參考數(shù)據(jù)比較得出結論:不能,(2)年齡在的被調查人共5個,利用枚舉法得到隨機選取兩人的總事件數(shù)共10個.其中有4人支持,1人不支持發(fā)展共享單車,選出恰好這兩人都支持的事件數(shù),最后根據(jù)古典概型概率公式求解.

試題解析:解:(Ⅰ)根據(jù)所給數(shù)據(jù)得到如下列聯(lián)表:

年齡低于35歲

年齡不低于35歲

合計

支持

30

10

40

不支持

5

5

10

合計

35

15

50

根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測值為

∴不能在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系.

(Ⅱ)“對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持發(fā)展共享單車”記為事件,

對年齡在的5個受訪人中,有4人支持,1人不支持發(fā)展共享單車,分別記為.則從這5人中隨機抽取2人的基本事件為:

,

,

.共10個.

其中,恰好抽取的兩人都支持發(fā)展共享單車的基本事件包含.共6個.

∴對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持發(fā)展共享單車的概率是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側視圖為直角三角形).

(1)求四棱錐P-ABCD的體積

(2)若G為BC上的動點,求證AEPG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家具廠有方木料,五合板,準備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料、五合板;生產(chǎn)每個書櫥需要方木枓、五合板.出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(2)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點坐標為.

(1)求拋物線的標準方程;

(2)過點作互相垂直的直線,與拋物線分別相交于兩點和兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域為(
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),當x>1時,有f(x)>0.
(1)求f(1),判定并證明f(x)的單調性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+1,a,b∈R,當x=﹣1時,函數(shù)f(x)取到最小值,且最小值為0;
(1)求f(x)解析式;
(2)關于x的方程f(x)=|x+1|﹣k+3恰有兩個不相等的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,,且,成等比數(shù)列.

(1)求數(shù)列的通項;

(2)求數(shù)列的前項和

查看答案和解析>>

同步練習冊答案