【題目】2017年某市街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或將共享單車占為“私有”等.為此,某機構就是否支持發(fā)展共享單車隨機調查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計如下表:
年齡 | ||||||
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展共享單車人數(shù) | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(Ⅱ)若對年齡在的被調查人中隨機選取兩人,對年齡在的被調查人中隨機選取一人進行調查,求選中的3人中支持發(fā)展共享單車的人數(shù)為2人的概率.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中.
【答案】(Ⅰ)不能在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系;(Ⅱ) .
【解析】試題分析:(1)將數(shù)據(jù)代入,計算出,與參考數(shù)據(jù)比較得出結論:不能,(2)年齡在的被調查人共5個,利用枚舉法得到隨機選取兩人的總事件數(shù)共10個.其中有4人支持,1人不支持發(fā)展共享單車,選出恰好這兩人都支持的事件數(shù),最后根據(jù)古典概型概率公式求解.
試題解析:解:(Ⅰ)根據(jù)所給數(shù)據(jù)得到如下列聯(lián)表:
年齡低于35歲 | 年齡不低于35歲 | 合計 | |
支持 | 30 | 10 | 40 |
不支持 | 5 | 5 | 10 |
合計 | 35 | 15 | 50 |
根據(jù)列聯(lián)表中的數(shù)據(jù),得到的觀測值為
.
∴不能在犯錯誤的概率不超過0.1的前提下,認為年齡與是否支持發(fā)展共享單車有關系.
(Ⅱ)“對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持發(fā)展共享單車”記為事件,
對年齡在的5個受訪人中,有4人支持,1人不支持發(fā)展共享單車,分別記為.則從這5人中隨機抽取2人的基本事件為:
,
,
,
.共10個.
其中,恰好抽取的兩人都支持發(fā)展共享單車的基本事件包含.共6個.
∴.
∴對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持發(fā)展共享單車的概率是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側視圖為直角三角形).
(1)求四棱錐P-ABCD的體積;
(2)若G為BC上的動點,求證:AE⊥PG.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家具廠有方木料,五合板,準備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料、五合板;生產(chǎn)每個書櫥需要方木枓、五合板.出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;
(2)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點坐標為.
(1)求拋物線的標準方程;
(2)過點作互相垂直的直線,與拋物線分別相交于兩點和兩點,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=lgx+1(1≤x≤100),則g(x)=f2(x)+f(x2)的值域為( )
A.[﹣2,7]
B.[2,7]
C.[﹣2,14]
D.[2,14]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域是(0,+∞),且滿足f(xy)=f(x)+f(y),當x>1時,有f(x)>0.
(1)求f(1),判定并證明f(x)的單調性;
(2)若f(2)=1,解不等式f(﹣x)+f(3﹣x)≥﹣2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+1,a,b∈R,當x=﹣1時,函數(shù)f(x)取到最小值,且最小值為0;
(1)求f(x)解析式;
(2)關于x的方程f(x)=|x+1|﹣k+3恰有兩個不相等的實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列.
(1)求數(shù)列的通項;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com