在數(shù)列{an}中,a1=2,3(a1+a2+…+an)=(n+2)an,n∈N*,則an=    .
n(n+1)
由已知可得3Sn=(n+2)an,當(dāng)n≥2時(shí),
3(Sn-Sn-1)=(n+2)an-(n+1)an-1=3an,
=.
∵a1···…··=2×××××…××=n(n+1),
∴an=n(n+1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*Snaan的等差中項(xiàng).
(1)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)證明<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿(mǎn)足a1+a2+…+an=n2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使,,成等差數(shù)列?若存在,用k分別表示p和r(只要寫(xiě)出一組);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在等差數(shù)列{an}中,a1=31,Sn是它的前n項(xiàng)和,S10=S22.
(1)求Sn;
(2)這個(gè)數(shù)列的前多少項(xiàng)的和最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足log2(1+Sn)=n+1,則{an}的通項(xiàng)公式為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)正項(xiàng)等差數(shù)列{an}的前2011項(xiàng)和等于2011,則的最小值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列{n(n+4) n}中的最大項(xiàng)是第k項(xiàng),則k=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若數(shù)列{an}滿(mǎn)足:存在正整數(shù)T,對(duì)于任意正整數(shù)n都有anTan成立,則稱(chēng)數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿(mǎn)足a1m(m>0),an+1則下列結(jié)論中錯(cuò)誤的是(  )
A.若m,則a5=3
B.若a3=2,則m可以取3個(gè)不同的值
C.若m,則數(shù)列{an}是周期為3的數(shù)列
D.?m∈Q且m≥2,使得數(shù)列{an}是周期數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案