【題目】定義在R上的函數(shù)f(x)對(duì)一切實(shí)數(shù)x、y都滿足f(x)≠0,且f(x+y)=f(x)f(y),已知f(x)在(0,+∞)上的值域?yàn)椋?,1),則f(x)在R上的值域是(
A.R
B.(0,1)
C.(0,+∞)
D.(0,1)∪(1,+∞)

【答案】A
【解析】解:因?yàn)槎x在R上的函數(shù)f(x)對(duì)一切實(shí)數(shù)x、y都滿足f(x)≠0,且f(x+y)=f(x)f(y),
令x=y=0可得f(0)=f(0)f(0),
解得f(0)=1
再令y=﹣x,則可得f(0)=f(x)f(﹣x)=1,
又f(x)在(0,+∞)上的值域?yàn)椋?,1),
所以f(x)在(﹣∞,0)上的值域?yàn)椋?,+∞)
綜上,f(x)在R上的值域是R
故選A.
【考點(diǎn)精析】本題主要考查了函數(shù)的值域的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,定義點(diǎn)P(x1 , y1)、Q(x2 , y2)之間的“直角距離”為L(zhǎng)(P,Q)=|x1﹣x2|+|y1﹣y2|,已知點(diǎn)A(x,1)、B(1,2)、C(5,2)三點(diǎn).
(1)若L(A,B)>L(A,C),求x的取值范圍;
(2)當(dāng)x∈R時(shí),不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則X的最大值是(
A.M
B.n
C.min{M,n}
D.max{M,n}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】F(x)=(x3﹣2x)f(x)(x≠0)是奇函數(shù),且f(x)不恒等于零,則f(x)為(
A.奇函數(shù)
B.偶函數(shù)
C.奇函數(shù)或偶函數(shù)
D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列1,-3,5,-7,9,…的一個(gè)通項(xiàng)公式為( )
A.an=2n-1
B.an=(-1)n(1-2n)
C.an=(-1)n(2n-1)
D.an=(-1)n(2n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=lg(x2﹣4x+3)的單調(diào)遞增區(qū)間為(
A.(﹣∞,1)
B.(﹣∞,2)
C.(3,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若全集U={1,2,3,4,5,6},M={2,3},N={1,3},則集合{4,5,6}等于(
A.M∪N
B.M∩N
C.(UM)∩(UN)
D.((UM)∪(UN)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法正確的是(
A.冪函數(shù)的圖象恒過(0,0)點(diǎn)
B.指數(shù)函數(shù)的圖象恒過(1,0)點(diǎn)
C.對(duì)數(shù)函數(shù)的圖象恒在y軸右側(cè)
D.冪函數(shù)的圖象恒在x軸上方

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長(zhǎng)度均為d=b﹣a,多個(gè)區(qū)間并集的長(zhǎng)度為各區(qū)間長(zhǎng)度之和,例如,(1,2)∪[3,5)的長(zhǎng)度d=(2﹣1)+(5﹣3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x﹣[x],其中x∈R.設(shè)f(x)=[x]{x},g(x)=x﹣1,當(dāng)0≤x≤k時(shí),不等式f(x)<g(x)解集區(qū)間的長(zhǎng)度為5,則k的值為

查看答案和解析>>

同步練習(xí)冊(cè)答案