【題目】在如圖所示的幾何體中,平面平面,四邊形為平行四邊形, , , , .

(1)求證: 平面;

(2)求到平面的距離;

(3)求三棱錐的體積.

【答案】1詳見解析;(2;(3.

【解析】試題分析:(1)先根據(jù)面面垂直性質(zhì)定理得平面,即得,再利用勾股定理得,最后根據(jù)線面垂直判定定理得結(jié)論(2)先根據(jù)平行轉(zhuǎn)化到平面的距離為點(diǎn)到平面的距離,再作,由面面垂直性質(zhì)定理得平面,最后計(jì)算即得結(jié)果(3)由于已知到平面的距離,所以利用等體積法先轉(zhuǎn)化為,再根據(jù)錐體體積公式求體積

試題解析:(1)∵平面平面,且平面平面

平面, ,

平面,

平面,

, ,,,

,平面

(2)設(shè)的中點(diǎn)為,連接,

,

∵平面平面,且平面平面,

平面,

平面,

所以點(diǎn)到平面的距離就等于點(diǎn)到平面的距離,

即點(diǎn)到平面的距離為

3,

,

,即三棱錐的體積為

點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法: ①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

男性

女性

合計(jì)

反感

10

不反感

8

合計(jì)

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
提示:可參考試卷第一頁的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有成立.

(Ⅰ)判斷上的單調(diào)性,并證明;

(Ⅱ)解不等式;

(Ⅲ)若對所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是某池塘中的浮萍蔓延的面積與時(shí)間月)的關(guān)系有以下敘述:

①這個(gè)指數(shù)函數(shù)的底數(shù)是2;

②第5個(gè)月時(shí),浮萍的面積就會超過

③浮萍從蔓延到需要經(jīng)過1.5個(gè)月;

④浮萍每個(gè)月增加的面積都相等;

⑤若浮萍蔓延到所經(jīng)過的時(shí)間分別為.其中正確的是

A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,

的單調(diào)遞減區(qū)間;

)若,求 的值;

)將函數(shù)的圖象向右平移個(gè)單位得到的圖象,若函數(shù)上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣mx﹣m在(﹣1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓AOB是某市休閑廣場的平面示意圖,半徑OA的長為10,管理部門在A,B兩處各安裝好一個(gè)光源,其相應(yīng)的光強(qiáng)度分別為4和9,根據(jù)光學(xué)原理,地面上某處照度y與光強(qiáng)度I成正比,與光源距離x的平方成反比,即y= (k為比例系數(shù)),經(jīng)測量,在弧AB的中心C處的照度為130.(C處的照度為A,B兩處光源的照度之和)
(1)求比例系數(shù)k的值;
(2)現(xiàn)在管理部門計(jì)劃在半圓弧AB上,照度最小處增設(shè)一個(gè)光源P,試問新增光源P安裝在什么位置?

查看答案和解析>>

同步練習(xí)冊答案