設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P.
(1)試用a表示點P的坐標(biāo);
(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;
(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個. 設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式.
(1)P的坐標(biāo)為()(2)△ABP的面積函數(shù)S(a)的值域為(0,)(3)f(a)=min{g(a), S(a)}
(1)將y=代入橢圓方程,得
化簡,得b2x4–a2b2x2+a2=0
由條件,有Δ=a4b4–4a2b2=0,得ab=2
解得x=或x=–(舍去)故P的坐標(biāo)為().
(2)∵在△ABP中,|AB|=2,高為,
∴
∵a>b>0,b=
∴a>,即a>,得0<<1
于是0<S(a)<,故△ABP的面積函數(shù)S(a)的值域為(0,)
(3)g(a)=c2=a2–b2=a2–
解不等式g(a)≥S(a),即a2–≥
整理,得a8–10a4+24≥0,即(a4–4)(a4–6)≥0
解得a≤(舍去)或a≥
故f(a)=min{g(a), S(a)}
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(Ⅰ)試用a表示點P的坐標(biāo).
(Ⅱ)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;
(Ⅲ)設(shè)min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個.設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,求函數(shù)f(a)=min{g(a),S(a)}的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)試用a表示點P的坐標(biāo).
(Ⅱ)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;
(Ⅲ)設(shè)min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試函數(shù)f(a)=min{g(a),S(a)}的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)試用a表示點P的坐標(biāo).
(Ⅱ)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;
(Ⅲ)設(shè)min{y1,y2,…,yn}為y1,y2,…,yn中最小的一個設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試函數(shù)f(a)=min{g(a),S(a)}的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com