若兩個(gè)橢圓的離心率相等,則稱它們?yōu)椤跋嗨茩E圓”.如圖,在直角坐標(biāo)系xOy中,已知橢圓C1=1,A1A2分別為橢圓C1的左、右頂點(diǎn).橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
 
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上異于A1,A2的任意一點(diǎn),過(guò)PPQx軸,垂足為Q,線段PQ交橢圓C1于點(diǎn)H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點(diǎn))
(1)=1(2)見(jiàn)解析
(1)由題意可知A1(-,0),A2(,0),
橢圓C1的離心率e.(3分)
設(shè)橢圓C2的方程為=1(ab>0),則b.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035019014635.png" style="vertical-align:middle;" />=,所以a=2.
所以橢圓C2的方程為=1.(6分)
(2)設(shè)P(x0,y0),y0≠0,則=1,從而=12-2
xx0代入=1得=1,從而y2=3-,即y=±.
因?yàn)?i>P,Hx軸的同側(cè),所以取y,即H(x0).(12分)
所以kA1P·kA2H=-1,從而A1PA2H.
又因?yàn)?i>PH⊥A1A2,所以H為△PA1A2的垂心.(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題:方程表示焦點(diǎn)在y軸上的橢圓;
命題:雙曲線的離心率,若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,斜率為1的直線與橢圓C交于不同兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)設(shè)直線過(guò)點(diǎn)F(1,0),求線段的長(zhǎng);
(3)若直線過(guò)點(diǎn)(m,0),且以為直徑的圓恰過(guò)原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓E=1(ab>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交EA,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為(  )
A.=1 B.=1 C.=1 D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓C:=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的一點(diǎn),λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的中心在原點(diǎn),焦距為4,一條準(zhǔn)線為x=-4,則該橢圓的方程為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦距為(  )
A.  B.2C.4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為橢圓上的一點(diǎn),,分別為橢圓的上、下頂點(diǎn),若△的面積為6,則滿足條件的點(diǎn)的個(gè)數(shù)為(   )
A.0B.2C.4D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案