在1,2,3,…9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)中至少有1個是偶數(shù)的概率;
(2)求這3個數(shù)和為18的概率;
(3)設(shè)ξ為這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時ξ的值是2).求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.
(1)由題意知本題是一個等可能事件的概率,
試驗發(fā)生所包含的事件數(shù)C93,
滿足條件的事件3個數(shù)中至少有1個是偶數(shù),包含三種情況一個偶數(shù),兩個偶數(shù),三個偶數(shù),
這三種情況是互斥的,根據(jù)等可能和互斥事件的概率公式得到
P(A)=
C14
C25
+
C24
C15
+
C34
C05
C39
=
37
42

(2)記“這3個數(shù)之和為18”為事件B,
考慮三數(shù)由大到小排列后的中間數(shù)只有可能為5、6、7、8,
分別為459,567,468,369,279,378,189七種情況,
P(B)=
7
C39
=
1
12
;
(3)隨機變量ξ的取值為0,1,2,
P(ξ=0)=
5
12

P(ξ=1)=
6
12

P(ξ=2)=
1
12

∴ξ的分布列為

精英家教網(wǎng)

∴ξ的數(shù)學(xué)期望為Eξ=0×
5
12
+1×
1
2
+2×
1
12
=
2
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,…9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)中至少有1個是偶數(shù)的概率;
(2)求這3個數(shù)和為18的概率;
(3)設(shè)ξ為這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時ξ的值是2).求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在1,2,3,…9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)中至少有1個是偶數(shù)的概率;
(2)求這3個數(shù)和為18的概率;
(3)設(shè)ξ為這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時ξ的值是2).求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省無錫市江陰市成化高中高三摸底數(shù)學(xué)試卷(解析版) 題型:解答題

在1,2,3,…9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)中至少有1個是偶數(shù)的概率;
(2)求這3個數(shù)和為18的概率;
(3)設(shè)ξ為這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時ξ的值是2).求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省揚州市高考數(shù)學(xué)二模考試樣卷1(解析版) 題型:解答題

在1,2,3,…9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)中至少有1個是偶數(shù)的概率;
(2)求這3個數(shù)和為18的概率;
(3)設(shè)ξ為這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時ξ的值是2).求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南通市二輪天天練(18)(解析版) 題型:解答題

在1,2,3,…9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)中至少有1個是偶數(shù)的概率;
(2)求這3個數(shù)和為18的概率;
(3)設(shè)ξ為這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時ξ的值是2).求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案