如圖,在直三棱柱中,
,。M、N分別是AC和BB1的中點。
(1)求二面角的大小。
(2)證明:在AB上存在一個點Q,使得平面⊥平面,
并求出的長度。
(1);(2)詳見解析
解析試題分析:(1)有兩種思路,其一是利用幾何體中的垂直關(guān)系,以B為坐標原點,所在的直線分別為,軸,軸,軸建立空間直角坐標系,利用平面與平面的法向量的夾角求二面角的大小.其二是按照作出二面角的平面角,并在三角形中求出該角的方法,利用平面平面,在平面內(nèi)過點作,垂足是,過作,垂足為,連結(jié),得二面角的平面角,最后在直角三角形中求;
(2)在空間直角坐標系中,設(shè),求出平面的法向量,和平面的法向量
再由確定點的坐標,進而求線段的長度.
方法一(向量法):如圖建立空間直角坐標系 1分
(1)
設(shè)平面的法向量為,平面的法向量為
則有 3分
5分
設(shè)二面角為,則
∴二面角的大小為60°。 6分
(2)設(shè), ∵
∴,設(shè)平面的法向量為
則有 10分
由(1)可知平面的法向量為,
平面平面
即此時,
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,已知側(cè)面,AB=BC=1,BB1=2,∠BCC1=.
(1) 求證:C1B⊥平面ABC;
(2)設(shè) =l(0≤l≤1),且平面AB1E與BB1E所成的銳二面角
的大小為30°,試求l的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以,為邊的平行四邊形的面積;
(2)若|a|=,且a分別與,垂直,求向量a的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知棱長為1的正方體AC1,E、F分別是B1C1、C1D的中點.
(1)求點A1到平面的BDEF的距離;
(2)求直線A1D與平面BDEF所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,邊長為1的正三角形所在平面與直角梯形所在平面垂直,且,,,,、分別是線段、的中點.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面為正方形,側(cè)面底面.為等腰直角三角形,且.,分別為底邊和側(cè)棱的中點.
(1)求證:∥平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com