將函數(shù)y=f(x)的圖象向左平移1個單位,再縱坐標不變,橫坐標伸長到原來的
π
3
倍,然后再向上平移1個單位,得到函數(shù)y=
3
sinx
的圖象.
(1)求y=f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若函數(shù)y=g(x)與y=f(x)的圖象關于直線x=2對稱,求當x∈[0,1]時,函數(shù)y=g(x)的最小值和最大值.
(1)函數(shù)y=
3
sinx
的圖象向下平移1個單位得y=
3
sinx-1
,再橫坐標縮短到原來的
3
π
倍得y=
3
sin
π
3
x-1
,然后向右移1個單位得y=
3
sin(
π
3
x-
π
3
)-1
所以函數(shù)y=f(x)的最小正周期為T=
π
3
=6
2kπ-
π
2
π
3
x-
π
3
≤2kπ+
π
2
⇒6k-
1
2
≤x≤6k+
5
2
,k∈Z
,
函數(shù)y=f(x)的遞增區(qū)間是[6k-
1
2
,6k+
5
2
],k∈Z

(2)因為函數(shù)y=g(x)與y=f(x)的圖象關于直線x=2對稱
∴當x∈[0,1]時,y=g(x)的最值即為x∈[3,4]時,y=f(x)的最值.
∵x∈[3,4]時,
π
3
x-
π
3
∈[
3
,π]

∴sin(
π
3
x-
π
3
∈[0,
3
2
]

∴f(x)∈[-1,
1
2
]

∴y=g(x)的最小值是-1,最大值為
1
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

把函數(shù)y=2+cos2x的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),然后向左平移1個單位長度,再向下平移2個單位長度,得到的函數(shù)的解析式是(  )
A.y=cos(x+1)B.y=cos(x-1)C.y=cos(4x+4)D.y=cos(4x+1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=sin(2x+ϕ)(-π<ϕ<0),y=f(x)圖象的一條對稱軸是直線x=
π
8

(Ⅰ)求ϕ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)y=3sin(2x+
π
3
)的圖象,只要把函數(shù)y=3sin2x圖象(  )
A.向右平移
π
3
個單位
B.向左平移
π
3
個單位
C.向右平移
π
6
個單位
D.向左平移
π
6
個單位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于函數(shù)f(x)=2sin(2x+
π
3
)給出下列結論:
①圖象關于原點中心對稱;
②圖象關于直線x=
π
12
軸對稱;
③圖象可由函數(shù)y=2sin2x的圖象向左平移
π
3
個單位得到;
④圖象向左平移
π
12
個單位,即得到函數(shù)y=2cos2x的圖象.
其中正確結論的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
在一個周期內(nèi)的圖象如圖所示,則f(
π
4
)
=(  )
A.1B.
1
2
C.-1D.-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為了得到函數(shù)y=cos(2x-
π
3
)
的圖象,只需將函數(shù)y=cos2x的圖象( 。
A.向左平移
π
6
個單位長度
B.向右平移
π
6
個單位長度
C.向左平移
π
3
個單位長度
D.向右平移
π
3
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,已知,則是(     )
A.直角三角形B.鈍角三角形
C.銳角三角形D.最小內(nèi)角大于45°的三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,,且,則下列關系成立的是(   ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案