在正方體中,分別是、的中點,則異面直線所成角的大小是(    )
A.B.C.D.
D

試題分析:連接交DN于點E,由題意知,所以,所以,即,所以;因為,所以;因為,所以,因為,所以,所以異面直線所成角的是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D為AC的中點,AC=BC=AA1=A1C=2。

(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角。

(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

右圖為一組合體,其底面為正方形,平面,且

(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱中,是棱上的一點,的延長線與的延長線的交點,且∥平面。

(1)求證:
(2)求二面角的平面角的余弦值;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面為菱形,且∠ABC =60°,AB=PC=2,AP=BP=

(Ⅰ)求證:平面PAB⊥平面ABCD ;
(Ⅱ)求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱柱中,已知平面平面,.

(1)求證:
(2)若為棱的中點,求證:平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱柱的底面是平行四邊形,且底面,,°,點中點,點中點.

(Ⅰ)求證:平面平面;
(Ⅱ)設二面角的大小為,直線與平面所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是三個互不重合的平面,是兩條不重合的直線,則下列命題中正確的是(   )
A.若,則
B.若,,,則
C.若,則
D.若,,則

查看答案和解析>>

同步練習冊答案