已知函數(shù)f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在區(qū)間[tt+1]上的最大值h(t);(Ⅱ)是否存在實(shí)數(shù)m,使得yf(x)的圖象與yg(x)的圖象有且只有三個不同的交點(diǎn)?若存在,求出m的取值范圍;,若不存在,說明理由。

(Ⅰ)  f(x)=2x(x-5)=2x2-10x(x∈R)  (Ⅱ)  見解析


解析:

(I)∵f(x)是二次函數(shù),且f(x)<0的解集是(0,5),∴可設(shè)f(x)=ax(x-5)(a>0),

∴f(x)在區(qū)間[-1,4]上的最大值是f(-1)=6a,

由已知,得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R).

(II)方程f(x)+=0等價于方程2x3-10x2+37=0,

設(shè)h(x)=2x3-10x2+37,則h??(x)=6x2-20x=2x(3x-10),

當(dāng)x∈(0,)時,h??(x)<0,h(x)是減函數(shù);當(dāng)x∈(,+∞)時,h??(x)>0,h(x)是增函數(shù),

∵h(yuǎn)(3)=1>0,h()=-<0,h(4)=5>0,∴方程h(x)=0在區(qū)間(3,)、(,4)內(nèi)分別有惟一實(shí)數(shù)根,而在(0,3),(4,+∞)內(nèi)沒有實(shí)數(shù)根,所以存在惟一的自然數(shù)m=3,使得方程f(x)+=0在區(qū)間(m,m+1)內(nèi)有且只有兩個不同的實(shí)數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題

(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開學(xué)考試數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=4x2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是(  )

A.f(1)≥25         B.f(1)=25     C.f(1)≤25         D.f(1)>25

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題

已知函數(shù)f(x)=若f(a)=,則a=                 (  )

A.-1                      B.

C.-1或                 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題

  已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實(shí)根,下列命題中:

    (1)方程f [f (x)]=x一定無實(shí)根;

    (2)若a>0,則不等式f [f (x)]>x對一切實(shí)數(shù)x都成立;

    (3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;

    (4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;

    正確的序號有          .              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:選擇題

已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點(diǎn)x1,x2,則有

A.x1x2<1    B.x1x2<x1x2

C.x1x2x1x2    D.x1x2>x1x2

 

 

查看答案和解析>>

同步練習(xí)冊答案