已知函數(shù)f(x)=-x2+8x,g(x)=6lnx+m.(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點(diǎn)?若存在,求出m的取值范圍;,若不存在,說明理由。
(Ⅰ) f(x)=2x(x-5)=2x2-10x(x∈R) (Ⅱ) 見解析
(I)∵f(x)是二次函數(shù),且f(x)<0的解集是(0,5),∴可設(shè)f(x)=ax(x-5)(a>0),
∴f(x)在區(qū)間[-1,4]上的最大值是f(-1)=6a,
由已知,得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R).
(II)方程f(x)+=0等價于方程2x3-10x2+37=0,
設(shè)h(x)=2x3-10x2+37,則h??(x)=6x2-20x=2x(3x-10),
當(dāng)x∈(0,)時,h??(x)<0,h(x)是減函數(shù);當(dāng)x∈(,+∞)時,h??(x)>0,h(x)是增函數(shù),
∵h(yuǎn)(3)=1>0,h()=-<0,h(4)=5>0,∴方程h(x)=0在區(qū)間(3,)、(,4)內(nèi)分別有惟一實(shí)數(shù)根,而在(0,3),(4,+∞)內(nèi)沒有實(shí)數(shù)根,所以存在惟一的自然數(shù)m=3,使得方程f(x)+=0在區(qū)間(m,m+1)內(nèi)有且只有兩個不同的實(shí)數(shù)根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開學(xué)考試數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實(shí)根,下列命題中:
(1)方程f [f (x)]=x一定無實(shí)根;
(2)若a>0,則不等式f [f (x)]>x對一切實(shí)數(shù)x都成立;
(3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點(diǎn)x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com